메뉴 건너뛰기




Volumn , Issue , 2016, Pages 127-135

Tree-structured reinforcement learning for sequential object localization

Author keywords

[No Author keywords available]

Indexed keywords

OBJECT RECOGNITION; REINFORCEMENT LEARNING;

EID: 85018886796     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (147)

References (28)
  • 1
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 2
    • 85029359197 scopus 로고    scopus 로고
    • Fast r-cnn
    • Ross Girshick. Fast r-cnn. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 3
    • 84911456915 scopus 로고    scopus 로고
    • Bing: Binarized normed gradients for objectness estimation at 300fps
    • Ming-Ming Cheng, Ziming Zhang, Wen-Yan Lin, and Philip Torr. Bing: Binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014.
    • (2014) CVPR
    • Ming, M.-C.1    Zhang, Z.2    Wen, Y.-L.3    Torr, P.4
  • 4
    • 84939234928 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals from edges. In ECCV. 2014.
    • (2014) ECCV
    • Lawrence Zitnick, C.1    Dollár, P.2
  • 5
    • 84960980241 scopus 로고    scopus 로고
    • Faster r-cnn: Towards real-time object detection with region proposal networks
    • Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS, 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 6
    • 15244352522 scopus 로고    scopus 로고
    • Optimal eye movement strategies in visual search
    • Jiri Najemnik and Wilson S Geisler. Optimal eye movement strategies in visual search. Nature, 434(7031):387-391, 2005.
    • (2005) Nature , vol.434 , Issue.7031 , pp. 387-391
    • Najemnik, J.1    Geisler, W.S.2
  • 7
    • 77951298115 scopus 로고    scopus 로고
    • The pascal visual object classes (voc) challenge
    • Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. IJCV, 88(2):303-338, 2010.
    • (2010) IJCV , vol.88 , Issue.2 , pp. 303-338
    • Everingham, M.1    Van Gool, L.2    Williams, C.K.I.3    Winn, J.4    Zisserman, A.5
  • 10
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 11
    • 84877745180 scopus 로고    scopus 로고
    • Searching for objects driven by context
    • Bogdan Alexe, Nicolas Heess, Yee W Teh, and Vittorio Ferrari. Searching for objects driven by context. In NIPS, 2012.
    • (2012) NIPS
    • Alexe, B.1    Heess, N.2    Teh, Y.W.3    Ferrari, V.4
  • 12
    • 84959186479 scopus 로고    scopus 로고
    • An active search strategy for efficient object class detection
    • Abel Gonzalez-Garcia, Alexander Vezhnevets, and Vittorio Ferrari. An active search strategy for efficient object class detection. In CVPR, 2015.
    • (2015) CVPR
    • Gonzalez-Garcia, A.1    Vezhnevets, A.2    Ferrari, V.3
  • 14
    • 84986295261 scopus 로고    scopus 로고
    • Reinforcement learning for visual object detection
    • Stefan Mathe, Aleksis Pirinen, and Cristian Sminchisescu. Reinforcement learning for visual object detection. In CVPR, 2016.
    • (2016) CVPR
    • Mathe, S.1    Pirinen, A.2    Sminchisescu, C.3
  • 15
    • 70350621774 scopus 로고    scopus 로고
    • Efficient subwindow search: A branch and bound framework for object localization
    • Christoph H Lampert, Matthew B Blaschko, and Thomas Hofmann. Efficient subwindow search: A branch and bound framework for object localization. TPAMI, 31(12):2129-2142, 2009.
    • (2009) TPAMI , vol.31 , Issue.12 , pp. 2129-2142
    • Lampert, C.H.1    Blaschko, M.B.2    Hofmann, T.3
  • 17
    • 84937959846 scopus 로고    scopus 로고
    • Recurrent models of visual attention
    • Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In NIPS, 2014.
    • (2014) NIPS
    • Mnih, V.1    Heess, N.2    Graves, A.3
  • 19
    • 84973897631 scopus 로고    scopus 로고
    • Active object localization with deep reinforcement learning
    • Juan C Caicedo and Svetlana Lazebnik. Active object localization with deep reinforcement learning. In ICCV, 2015.
    • (2015) ICCV
    • Caicedo, J.C.1    Lazebnik, S.2
  • 25
    • 84888340666 scopus 로고    scopus 로고
    • Torch7: A matlab-like environment for Machine learning
    • Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environment for machine learning. In NIPS Workshop, 2011.
    • (2011) NIPS Workshop
    • Collobert, R.1    Kavukcuoglu, K.2    Farabet, C.3
  • 26
    • 84946817713 scopus 로고    scopus 로고
    • Geodesic object proposals
    • Philipp Krähenbühl and Vladlen Koltun. Geodesic object proposals. In ECCV. 2014.
    • (2014) ECCV
    • Krähenbühl, P.1    Koltun, V.2
  • 27
    • 84963773434 scopus 로고    scopus 로고
    • What makes for effective detection proposals?
    • J. Hosang, R. Benenson, P. Dollár, and B. Schiele. What makes for effective detection proposals? TPAMI, 38(4):814-830, 2016.
    • (2016) TPAMI , vol.38 , Issue.4 , pp. 814-830
    • Hosang, J.1    Benenson, R.2    Dollár, P.3    Schiele, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.