-
1
-
-
84855607097
-
Review of the current state of whole slide imaging in pathology
-
Pantanowitz L, Valenstein PN, Evans AJ, Kaplan KJ, Pfeifer JD, Wilbur DC, Collins LC, Colgan TJ. Review of the current state of whole slide imaging in pathology. J Pathol Inform 2011;2:36.
-
(2011)
J Pathol Inform
, vol.2
, pp. 36
-
-
Pantanowitz, L.1
Valenstein, P.N.2
Evans, A.J.3
Kaplan, K.J.4
Pfeifer, J.D.5
Wilbur, D.C.6
Collins, L.C.7
Colgan, T.J.8
-
2
-
-
77956941136
-
Histopathological image analysis: A review
-
Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: A review. IEEE Rev Biomed Eng 2009;2:147–171.
-
(2009)
IEEE Rev Biomed Eng
, vol.2
, pp. 147-171
-
-
Gurcan, M.N.1
Boucheron, L.E.2
Can, A.3
Madabhushi, A.4
Rajpoot, N.M.5
Yener, B.6
-
4
-
-
84978622703
-
A multi-scale superpixel classification approach to the detection of regions of interest in whole slide histopathology images
-
Orlando, FL, USA;, p 94200H-94200H.
-
Bejnordi BE, Litjens G, Hermsen M, Karssemeijer N, van der Laak JA. A multi-scale superpixel classification approach to the detection of regions of interest in whole slide histopathology images. In: Proceedings of the International Society for Optics and Photonics (SPIE) Conference on Medical Imaging, Orlando, FL, USA; 2015. p 94200H-94200H.
-
(2015)
In Proceedings of the International Society for Optics and Photonics (SPIE) Conference on Medical Imaging
-
-
Bejnordi, B.E.1
Litjens, G.2
Hermsen, M.3
Karssemeijer, N.4
van der Laak, J.A.5
-
5
-
-
84901269374
-
A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution
-
Khan AM, Rajpoot N, Treanor D, Magee D. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng 2014;61:1729–1738.
-
(2014)
IEEE Trans Biomed Eng
, vol.61
, pp. 1729-1738
-
-
Khan, A.M.1
Rajpoot, N.2
Treanor, D.3
Magee, D.4
-
6
-
-
84880845869
-
Automatic nuclei segmentation in H&E stained breast cancer histopathology images
-
Veta M, van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JP. Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS One 2013;8:e70221.
-
(2013)
PLoS One
, vol.8
-
-
Veta, M.1
van Diest, P.J.2
Kornegoor, R.3
Huisman, A.4
Viergever, M.A.5
Pluim, J.P.6
-
7
-
-
84886247903
-
Pathology imaging informatics for quantitative analysis of whole-slide images
-
Kothari S, Phan JH, Stokes TH, Wang MD. Pathology imaging informatics for quantitative analysis of whole-slide images. J Am Med Inform Assoc 2013;20:1099–1108.
-
(2013)
J Am Med Inform Assoc
, vol.20
, pp. 1099-1108
-
-
Kothari, S.1
Phan, J.H.2
Stokes, T.H.3
Wang, M.D.4
-
8
-
-
84896881444
-
-
Cancer Incidence and Mortality Worldwide IARC CancerBase 11 [Internet]. Lyon, France International Agency for Research on Cancer;, Available from, accessed on 27/4/2016.
-
Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr, accessed on 27/4/2016.
-
(2013)
GLOBOCAN 2012 v1.0
-
-
Ferlay, J.1
Soerjomataram, I.2
Ervik, M.3
Dikshit, R.4
Eser, S.5
Mathers, C.6
Rebelo, M.7
Parkin, D.M.8
Forman, D.9
Bray, F.10
-
9
-
-
77955512358
-
Lymphangiogenesis and lymphatic metastasis in breast cancer
-
Ran S, Volk L, Hall K, Flister MJ. Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology 2010;17:229–251.
-
(2010)
Pathophysiology
, vol.17
, pp. 229-251
-
-
Ran, S.1
Volk, L.2
Hall, K.3
Flister, M.J.4
-
11
-
-
84879080110
-
Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using complex Daubechies wavelets
-
Niwas SI, Palanisamy P, Sujathan K, Bengtsson E. Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using complex Daubechies wavelets. Signal Process 2013;93:2828–2837.
-
(2013)
Signal Process
, vol.93
, pp. 2828-2837
-
-
Niwas, S.I.1
Palanisamy, P.2
Sujathan, K.3
Bengtsson, E.4
-
12
-
-
84989902056
-
Intraoperative neuropathology of glioma recurrence Cell detection and classification
-
San Diego, CA, USA, 979109-979109.
-
Abas FS, Gokozan HN, Goksel B, Otero JJ, Gurcan MN. Intraoperative neuropathology of glioma recurrence: Cell detection and classification. In: Proceedings of the International Society for Optics and Photonics (SPIE) Conference on Medical Imaging, San Diego, CA, USA; 2016. p 979109-979109.
-
(2016)
In Proceedings of the International Society for Optics and Photonics (SPIE) Conference on Medical Imaging
-
-
Abas, F.S.1
Gokozan, H.N.2
Goksel, B.3
Otero, J.J.4
Gurcan, M.N.5
-
13
-
-
84894154720
-
Histopathological image analysis for centroblasts classification through dimensionality reduction approaches
-
Kornaropoulos EN, Niazi M, Lozanski G, Gurcan MN. Histopathological image analysis for centroblasts classification through dimensionality reduction approaches. Cytometry Part A 2014;85A:242–255.
-
(2014)
Cytometry Part A
, vol.85A
, pp. 242-255
-
-
Kornaropoulos, E.N.1
Niazi, M.2
Lozanski, G.3
Gurcan, M.N.4
-
14
-
-
84555179528
-
A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies
-
Doyle S, Feldman M, Tomaszewski J, Madabhushi A. A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans Biomed Eng 2012;59:1205–1218.
-
(2012)
IEEE Trans Biomed Eng
, vol.59
, pp. 1205-1218
-
-
Doyle, S.1
Feldman, M.2
Tomaszewski, J.3
Madabhushi, A.4
-
15
-
-
84989840230
-
Identification of immune cell infiltration in hematoxylin-eosin stained breast cancer samples Texture-based classification of tissue morphologies
-
San Diego, CA, USA;, 979110-979110.
-
Turkki R, Linder N, Kovanen PE, Pellinen T, Lundin J. Identification of immune cell infiltration in hematoxylin-eosin stained breast cancer samples: Texture-based classification of tissue morphologies. In: Proceedings of the International Society for Optics and Photonics (SPIE) Conference on Medical Imaging, San Diego, CA, USA; 2016. p 979110-979110.
-
(2016)
In Proceedings of the International Society for Optics and Photonics (SPIE) Conference on Medical Imaging
-
-
Turkki, R.1
Linder, N.2
Kovanen, P.E.3
Pellinen, T.4
Lundin, J.5
-
16
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010;33:1–22.
-
(2010)
J Stat Softw
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
17
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001;45:5–32. 1
-
(2001)
Mach Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe, NV, USA;
-
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA; 2012. pp 1097–1105.
-
(2012)
In Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
20
-
-
84968542311
-
Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
-
Sirinukunwattana K, Raza SEA, Tsang YW, Snead D, Cree IA, Rajpoot NM. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 2016;35:1196–1206.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, pp. 1196-1206
-
-
Sirinukunwattana, K.1
Raza, S.E.A.2
Tsang, Y.W.3
Snead, D.4
Cree, I.A.5
Rajpoot, N.M.6
-
21
-
-
84923019397
-
Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
-
Wang H, Cruz-Roa A, Basavanhally A, Gilmore H, Shih N, Feldman M, Tomaszewski J, Gonzalez F, Madabhushi A. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging 2014;1:034003.
-
(2014)
J Med Imaging
, vol.1
, pp. 034003
-
-
Wang, H.1
Cruz-Roa, A.2
Basavanhally, A.3
Gilmore, H.4
Shih, N.5
Feldman, M.6
Tomaszewski, J.7
Gonzalez, F.8
Madabhushi, A.9
-
22
-
-
84885899176
-
-
Berlin, Heidelberg, Springer, pp
-
Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013. Berlin, Heidelberg: Springer; 2013. pp 411–418.
-
(2013)
Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013
, pp. 411-418
-
-
Cireşan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
24
-
-
84984995314
-
-
arXiv preprint arXiv, 1603.00275.
-
Sirinukunwattana K, Pluim JPW, Chen H, Qi X, Heng P-A, Guo YB, Wang LY, Matuszewski BJ, Bruni E, Sanchez U, et al. Gland Segmentation in Colon Histology Images: The GlaS Challenge Contest. arXiv preprint arXiv 2016; 1603.00275.
-
(2016)
Gland Segmentation in Colon Histology Images The GlaS Challenge Contest
-
-
Sirinukunwattana, K.1
Pluim, J.P.W.2
Chen, H.3
Qi, X.4
Heng, P.-A.5
Guo, Y.B.6
Wang, L.Y.7
Matuszewski, B.J.8
Bruni, E.9
Sanchez, U.10
-
25
-
-
85009266679
-
Feature-based analysis of mouse prostatic intraepithelial neoplasia in histological tissue sections
-
Ruusuvuori P, Valkonen M, Nykter M, Visakorpi T, Latonen L. Feature-based analysis of mouse prostatic intraepithelial neoplasia in histological tissue sections. J Pathol Inform 2016;7:5.
-
(2016)
J Pathol Inform
, vol.7
, pp. 5
-
-
Ruusuvuori, P.1
Valkonen, M.2
Nykter, M.3
Visakorpi, T.4
Latonen, L.5
-
26
-
-
49349108623
-
A threshold selection method from gray-level histograms
-
Otsu N. A threshold selection method from gray-level histograms. Automatica 1975;11:23–27.
-
(1975)
Automatica
, vol.11
, pp. 23-27
-
-
Otsu, N.1
-
27
-
-
0003626435
-
-
2nd ed, New Jersey, Upper Saddle River, Prentice hall, Inc
-
Gonzalez RC, Woods RE. Digital Image Processing, 2nd ed. New Jersey, Upper Saddle River: Prentice hall, Inc.; 2002.
-
(2002)
Digital Image Processing
-
-
Gonzalez, R.C.1
Woods, R.E.2
-
28
-
-
77958048692
-
Linking whole-slide microscope images with DICOM by using JPEG2000 interactive protocol
-
Tuominen VJ, Isola J. Linking whole-slide microscope images with DICOM by using JPEG2000 interactive protocol. J Digit Imaging 2010;23:454–462.
-
(2010)
J Digit Imaging
, vol.23
, pp. 454-462
-
-
Tuominen, V.J.1
Isola, J.2
-
29
-
-
0034890852
-
Quantification of histochemical staining by color deconvolution
-
Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 2001;23:291–299.
-
(2001)
Anal Quant Cytol Histol
, vol.23
, pp. 291-299
-
-
Ruifrok, A.C.1
Johnston, D.A.2
-
30
-
-
41149178569
-
Adaptive thresholding using the integral image
-
Bradley D, Roth G. Adaptive thresholding using the integral image. J Graph Gpu Game Tools 2007;12:13–21.
-
(2007)
J Graph Gpu Game Tools
, vol.12
, pp. 13-21
-
-
Bradley, D.1
Roth, G.2
-
31
-
-
0036647193
-
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
-
Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 2002;24:971–987.
-
(2002)
IEEE Trans Pattern Anal Mach Intell
, vol.24
, pp. 971-987
-
-
Ojala, T.1
Pietikäinen, M.2
Mäenpää, T.3
-
32
-
-
0033640841
-
Rotation-invariant texture classification using feature distributions
-
Pietikäinen M, Ojala T, Xu Z. Rotation-invariant texture classification using feature distributions. Pattern Recognit 2000;33:43–52.
-
(2000)
Pattern Recognit
, vol.33
, pp. 43-52
-
-
Pietikäinen, M.1
Ojala, T.2
Xu, Z.3
-
33
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis 2004;60:91–110.
-
(2004)
Int J Comput Vis
, vol.60
, pp. 91-110
-
-
Lowe, D.G.1
-
34
-
-
72449198559
-
Trainable Classifier-fusion Schemes An Application to Pedestrian Detection
-
St. Louis, MO, USA;
-
Ludwig O, Delgado D, Goncalves V, Nunes U. Trainable Classifier-fusion Schemes: An Application to Pedestrian Detection. In: Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA; 2009. pp 432–437.
-
(2009)
In Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems
, pp. 432-437
-
-
Ludwig, O.1
Delgado, D.2
Goncalves, V.3
Nunes, U.4
-
36
-
-
3142736062
-
Robust wide-baseline stereo from maximally stable extremal regions
-
Matas J, Chum O, Urban M, Pajdla T. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis Comput 2004;22:761–767.
-
(2004)
Image Vis Comput
, vol.22
, pp. 761-767
-
-
Matas, J.1
Chum, O.2
Urban, M.3
Pajdla, T.4
-
38
-
-
59349090297
-
Computer-aided prognosis of neuroblastoma on whole-slide images: Classification of stromal development
-
Sertel O, Kong J, Shimada H, Catalyurek UV, Saltz JH, Gurcan MN. Computer-aided prognosis of neuroblastoma on whole-slide images: Classification of stromal development. Patt Recogn 2009;42:1093–1103.
-
(2009)
Patt Recogn
, vol.42
, pp. 1093-1103
-
-
Sertel, O.1
Kong, J.2
Shimada, H.3
Catalyurek, U.V.4
Saltz, J.H.5
Gurcan, M.N.6
-
39
-
-
84982218412
-
Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
-
Yu KH, Zhang C, Berry GJ, Altman RB, Ré C, Rubin DL, Snyder M. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun 2016;7:12474.
-
(2016)
Nat Commun
, vol.7
, pp. 12474
-
-
Yu, K.H.1
Zhang, C.2
Berry, G.J.3
Altman, R.B.4
Ré, C.5
Rubin, D.L.6
Snyder, M.7
-
40
-
-
85014442834
-
-
arXiv preprint, arXiv1606.05718.
-
Wang D, Khosla A, Gargeya R, Irshad H, Beck AH. Deep learning for identifying metastatic breast cancer. arXiv preprint 2016; arXiv:1606.05718.
-
(2016)
Deep learning for identifying metastatic breast cancer
-
-
Wang, D.1
Khosla, A.2
Gargeya, R.3
Irshad, H.4
Beck, A.H.5
|