-
2
-
-
0003403113
-
-
International Energy Agency
-
World Energy Outlook; International Energy Agency, 2015.
-
(2015)
World Energy Outlook
-
-
-
4
-
-
84964963419
-
A planet with two billion cars
-
Gross, M. A planet with two billion cars Curr. Biol. 2016, 26, R307-R318 10.1016/j.cub.2016.04.019
-
(2016)
Curr. Biol.
, vol.26
, pp. R307-R318
-
-
Gross, M.1
-
5
-
-
85033718994
-
-
Measured on April 10th, at the Mauna Loa Observatory, Hawaii. Published by the Earth Systems Research Laboratory, Global Monitoring Division, National Oceanic and Atmospheric Administration. For more information, see: (2016)
-
Measured on April 10th 2016, at the Mauna Loa Observatory, Hawaii. Published by the Earth Systems Research Laboratory, Global Monitoring Division, National Oceanic and Atmospheric Administration. For more information, see: http://www.esrl.noaa.gov/gmd/ccgg/trends/graph.html (2016).
-
(2016)
-
-
-
7
-
-
84858067518
-
The nonsense of biofuels
-
Michel, H. The nonsense of biofuels Angew. Chem., Int. Ed. 2012, 51, 2516-2518 10.1002/anie.201200218
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 2516-2518
-
-
Michel, H.1
-
8
-
-
4043112177
-
Sustainable hydrogen production
-
Turner, J. A. Sustainable hydrogen production Science 2004, 305, 972-974 10.1126/science.1103197
-
(2004)
Science
, vol.305
, pp. 972-974
-
-
Turner, J.A.1
-
9
-
-
33750458683
-
Powering the planet: Chemical challenges in solar energy utilization
-
Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729-15735 10.1073/pnas.0603395103
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
10
-
-
33846962799
-
Don't forget long-term fundamental research in energy
-
Whitesides, G. M.; Crabtree, G. W. Don't forget long-term fundamental research in energy Science 2007, 315, 796-798 10.1126/science.1140362
-
(2007)
Science
, vol.315
, pp. 796-798
-
-
Whitesides, G.M.1
Crabtree, G.W.2
-
11
-
-
57949083683
-
Hydrogen's role in an uncertain energy future
-
Moriarty, P.; Honnery, D. Hydrogen's role in an uncertain energy future Int. J. Hydrogen Energy 2009, 34, 31-39 10.1016/j.ijhydene.2008.10.060
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 31-39
-
-
Moriarty, P.1
Honnery, D.2
-
12
-
-
77958151146
-
A hydrogen standard for future energy accounting?
-
Moriarty, P.; Honnery, D. A hydrogen standard for future energy accounting? Int. J. Hydrogen Energy 2010, 35, 12374-12380 10.1016/j.ijhydene.2010.08.060
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 12374-12380
-
-
Moriarty, P.1
Honnery, D.2
-
13
-
-
78651403921
-
The hydrogen issue
-
Armaroli, N.; Balzani, V. The hydrogen issue ChemSusChem 2011, 4, 21-36 10.1002/cssc.201000182
-
(2011)
ChemSusChem
, vol.4
, pp. 21-36
-
-
Armaroli, N.1
Balzani, V.2
-
14
-
-
34447512986
-
Hydrogen storage: The remaining scientific and technological challenges
-
Felderhoff, M.; Weidenthaler, C.; von Helmolt, R.; Eberle, U. Hydrogen storage: the remaining scientific and technological challenges Phys. Chem. Chem. Phys. 2007, 9, 2643-2653 10.1039/b701563c
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, pp. 2643-2653
-
-
Felderhoff, M.1
Weidenthaler, C.2
Von Helmolt, R.3
Eberle, U.4
-
15
-
-
84928468821
-
Automotive hydrogen fuelling stations: An international review
-
Alazemi, J.; Andrews, J. Automotive hydrogen fuelling stations: An international review Renewable Sustainable Energy Rev. 2015, 48, 483-499 10.1016/j.rser.2015.03.085
-
(2015)
Renewable Sustainable Energy Rev.
, vol.48
, pp. 483-499
-
-
Alazemi, J.1
Andrews, J.2
-
16
-
-
85033662132
-
-
See
-
See: Toyota-USA Newsroom. https://pressroom.toyota.com/releases/2016+toyota+mirai+fuel+cell+product.htm (2016).
-
(2016)
Toyota-USA Newsroom
-
-
-
17
-
-
34248674400
-
Metal hydride materials for solid hydrogen storage: A review
-
Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review Int. J. Hydrogen Energy 2007, 32, 1121-1140 10.1016/j.ijhydene.2006.11.022
-
(2007)
Int. J. Hydrogen Energy
, vol.32
, pp. 1121-1140
-
-
Sakintuna, B.1
Lamari-Darkrim, F.2
Hirscher, M.3
-
18
-
-
65649135183
-
Storage of hydrogen in nanostructured carbon materials
-
Yueruem, Y.; Taralp, A.; Veziroglu, T. N. Storage of hydrogen in nanostructured carbon materials Int. J. Hydrogen Energy 2009, 34, 3784-3798 10.1016/j.ijhydene.2009.03.001
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 3784-3798
-
-
Yueruem, Y.1
Taralp, A.2
Veziroglu, T.N.3
-
19
-
-
84863011092
-
Hydrogen storage in metal-organic frameworks
-
Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Hydrogen storage in metal-organic frameworks Chem. Rev. 2012, 112, 782-835 10.1021/cr200274s
-
(2012)
Chem. Rev.
, vol.112
, pp. 782-835
-
-
Suh, M.P.1
Park, H.J.2
Prasad, T.K.3
Lim, D.-W.4
-
20
-
-
65549135419
-
Ammonia borane as an efficient and lightweight hydrogen storage medium
-
Peng, B.; Chen, J. Ammonia borane as an efficient and lightweight hydrogen storage medium Energy Environ. Sci. 2008, 1, 479-483 10.1039/b809243p
-
(2008)
Energy Environ. Sci.
, vol.1
, pp. 479-483
-
-
Peng, B.1
Chen, J.2
-
21
-
-
80052236484
-
Chemical hydrogen storage: ″material″ gravimetric capacity versus ″system″ gravimetric capacity
-
Demirci, U. B.; Miele, P. Chemical hydrogen storage: ″material″ gravimetric capacity versus ″system″ gravimetric capacity Energy Environ. Sci. 2011, 4, 3334-3341 10.1039/c1ee01612a
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3334-3341
-
-
Demirci, U.B.1
Miele, P.2
-
22
-
-
83455164480
-
Hydrolysis of ammonia borane as a hydrogen source: Fundamental issues and potential solutions towards implementation
-
Sanyal, U.; Demirci, U. B.; Jagirdar, B. R.; Miele, P. Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation ChemSusChem 2011, 4, 1731-1739 10.1002/cssc.201100318
-
(2011)
ChemSusChem
, vol.4
, pp. 1731-1739
-
-
Sanyal, U.1
Demirci, U.B.2
Jagirdar, B.R.3
Miele, P.4
-
23
-
-
84906271533
-
Complex hydrides for hydrogen storage - New perspectives
-
Ley, B. M.; Jepsen, L. H.; Lee, Y.-S.; Cho, Y. W.; von Colbe, J. M. B.; Dornheim, M.; Rokni, M.; Jensen, J. O.; Sloth, M.; Filinchuk, Y.; Jørgensen, E. E.; Besenbacher, F.; Jensen, T. R. Complex hydrides for hydrogen storage-new perspectives Mater. Today 2014, 17, 122-128 10.1016/j.mattod.2014.02.013
-
(2014)
Mater. Today
, vol.17
, pp. 122-128
-
-
Ley, B.M.1
Jepsen, L.H.2
Lee, Y.-S.3
Cho, Y.W.4
Von Colbe, J.M.B.5
Dornheim, M.6
Rokni, M.7
Jensen, J.O.8
Sloth, M.9
Filinchuk, Y.10
Jørgensen, E.E.11
Besenbacher, F.12
Jensen, T.R.13
-
24
-
-
49649085195
-
Bioinspired energy conversion systems for hydrogen production and storage
-
Fukuzumi, S. Bioinspired energy conversion systems for hydrogen production and storage Eur. J. Inorg. Chem. 2008, 2008, 1351-1362 10.1002/ejic.200701369
-
(2008)
Eur. J. Inorg. Chem.
, vol.2008
, pp. 1351-1362
-
-
Fukuzumi, S.1
-
25
-
-
58149147646
-
Carbon dioxide - The hydrogen-storage material of the future?
-
Enthaler, S. Carbon dioxide-the hydrogen-storage material of the future? ChemSusChem 2008, 1, 801-804 10.1002/cssc.200800101
-
(2008)
ChemSusChem
, vol.1
, pp. 801-804
-
-
Enthaler, S.1
-
26
-
-
58149176135
-
Breakthroughs in hydrogen storage - Formic acid as a sustainable storage material for hydrogen
-
Joo, F. Breakthroughs in hydrogen storage-formic acid as a sustainable storage material for hydrogen ChemSusChem 2008, 1, 805-808 10.1002/cssc.200800133
-
(2008)
ChemSusChem
, vol.1
, pp. 805-808
-
-
Joo, F.1
-
27
-
-
77956117359
-
Carbon dioxide and formic acid - The couple for environmental-friendly hydrogen storage?
-
Enthaler, S.; von Langermann, J.; Schmidt, T. Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage? Energy Environ. Sci. 2010, 3, 1207-1217 10.1039/b907569k
-
(2010)
Energy Environ. Sci.
, vol.3
, pp. 1207-1217
-
-
Enthaler, S.1
Von Langermann, J.2
Schmidt, T.3
-
28
-
-
77953317775
-
Hydrogen generation from formic acid and alcohols using homogeneous catalysts
-
Johnson, T. C.; Morris, D. J.; Wills, M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts Chem. Soc. Rev. 2010, 39, 81-88 10.1039/B904495G
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 81-88
-
-
Johnson, T.C.1
Morris, D.J.2
Wills, M.3
-
29
-
-
80052937125
-
Hydrogen Generation from Formic Acid Decomposition by Ruthenium Carbonyl Complexes. Tetraruthenium Dodecacarbonyl Tetrahydride as an Active Intermediate
-
Czaun, M.; Goeppert, A.; May, R.; Haiges, R.; Prakash, G. K. S.; Olah, G. A. Hydrogen Generation from Formic Acid Decomposition by Ruthenium Carbonyl Complexes. Tetraruthenium Dodecacarbonyl Tetrahydride as an Active Intermediate ChemSusChem 2011, 4, 1241-1248 10.1002/cssc.201000446
-
(2011)
ChemSusChem
, vol.4
, pp. 1241-1248
-
-
Czaun, M.1
Goeppert, A.2
May, R.3
Haiges, R.4
Prakash, G.K.S.5
Olah, G.A.6
-
30
-
-
84864227859
-
Formic acid as a hydrogen source - Recent developments and future trends
-
Grasemann, M.; Laurenczy, G. Formic acid as a hydrogen source-recent developments and future trends Energy Environ. Sci. 2012, 5, 8171-8181 10.1039/c2ee21928j
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8171-8181
-
-
Grasemann, M.1
Laurenczy, G.2
-
31
-
-
84914695377
-
Homogeneous catalytic dehydrogenation of formic acid: Progress towards a hydrogen-based economy
-
Laurenczy, G.; Dyson, P. J. Homogeneous catalytic dehydrogenation of formic acid: progress towards a hydrogen-based economy J. Braz. Chem. Soc. 2014, 25, 2157-2163 10.5935/0103-5053.20140235
-
(2014)
J. Braz. Chem. Soc.
, vol.25
, pp. 2157-2163
-
-
Laurenczy, G.1
Dyson, P.J.2
-
33
-
-
84951746251
-
Hydrogen energy future with formic acid: A renewable chemical hydrogen storage system
-
Singh, A. K.; Singh, S.; Kumar, A. Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system Catal. Sci. Technol. 2016, 6, 12-40 10.1039/C5CY01276G
-
(2016)
Catal. Sci. Technol.
, vol.6
, pp. 12-40
-
-
Singh, A.K.1
Singh, S.2
Kumar, A.3
-
34
-
-
84978396723
-
Formic acid as a hydrogen storage material - Development of homogeneous catalysts for selective hydrogen release
-
Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release Chem. Soc. Rev. 2016, 45, 3954-3988 10.1039/C5CS00618J
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 3954-3988
-
-
Mellmann, D.1
Sponholz, P.2
Junge, H.3
Beller, M.4
-
37
-
-
84905086873
-
Life cycle assessment of hydrogen production via electrolysis e a review
-
Bhandari, R.; Trudewind, C. A.; Zapp, P. Life cycle assessment of hydrogen production via electrolysis e a review J. Cleaner Prod. 2014, 85, 151-163 10.1016/j.jclepro.2013.07.048
-
(2014)
J. Cleaner Prod.
, vol.85
, pp. 151-163
-
-
Bhandari, R.1
Trudewind, C.A.2
Zapp, P.3
-
38
-
-
84855831136
-
Life cycle assessment of various hydrogen production methods
-
Cetinkaya, E.; Dincer, I.; Naterer, G. F. Life cycle assessment of various hydrogen production methods Int. J. Hydrogen Energy 2012, 37, 2071-2080 10.1016/j.ijhydene.2011.10.064
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, pp. 2071-2080
-
-
Cetinkaya, E.1
Dincer, I.2
Naterer, G.F.3
-
39
-
-
44649143176
-
Recent advances in direct formic acid fuel cells (DFAFC)
-
Yu, X.; Pickup, P. G. Recent advances in direct formic acid fuel cells (DFAFC) J. Power Sources 2008, 182, 124-132 10.1016/j.jpowsour.2008.03.075
-
(2008)
J. Power Sources
, vol.182
, pp. 124-132
-
-
Yu, X.1
Pickup, P.G.2
-
40
-
-
18844451534
-
Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells
-
Ha, S.; Larsen, R.; Masel, R. I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells J. Power Sources 2005, 144, 28-34 10.1016/j.jpowsour.2004.12.031
-
(2005)
J. Power Sources
, vol.144
, pp. 28-34
-
-
Ha, S.1
Larsen, R.2
Masel, R.I.3
-
42
-
-
85035781072
-
-
For more details, see
-
For more details, see: NEAH Power. www.neahpower.com (2016).
-
(2016)
NEAH Power
-
-
-
43
-
-
11144284745
-
Chemical reactions of C(1) compounds in near-critical and supercritical water
-
Watanabe, M.; Sato, T.; Inomata, H.; Smith, R. L.; Arai, K., Jr.; Kruse, A.; Dinjus, E. Chemical reactions of C(1) compounds in near-critical and supercritical water Chem. Rev. 2004, 104, 5803-5822 10.1021/cr020415y
-
(2004)
Chem. Rev.
, vol.104
, pp. 5803-5822
-
-
Watanabe, M.1
Sato, T.2
Inomata, H.3
Smith, R.L.4
Arai, K.5
Kruse, A.6
Dinjus, E.7
-
44
-
-
0035947890
-
Carbon monoxide poisoning of proton exchange membrane fuel cells
-
Baschuk, J. J.; Li, X. Carbon monoxide poisoning of proton exchange membrane fuel cells Int. J. Energy Res. 2001, 25, 695-713 10.1002/er.713
-
(2001)
Int. J. Energy Res.
, vol.25
, pp. 695-713
-
-
Baschuk, J.J.1
Li, X.2
-
45
-
-
33847305491
-
A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation
-
Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.-S.; Wang, H.; Shen, J. A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation J. Power Sources 2007, 165, 739-756 10.1016/j.jpowsour.2006.12.012
-
(2007)
J. Power Sources
, vol.165
, pp. 739-756
-
-
Cheng, X.1
Shi, Z.2
Glass, N.3
Zhang, L.4
Zhang, J.5
Song, D.6
Liu, Z.-S.7
Wang, H.8
Shen, J.9
-
46
-
-
67649407303
-
Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell
-
Das, S. K.; Reis, A.; Berry, K. J. Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell J. Power Sources 2009, 193, 691-698 10.1016/j.jpowsour.2009.04.021
-
(2009)
J. Power Sources
, vol.193
, pp. 691-698
-
-
Das, S.K.1
Reis, A.2
Berry, K.J.3
-
47
-
-
79951897180
-
Carbon monoxide-tolerant platinum nanoparticle catalysts on defect engineered graphene
-
Kim, G.; Jhi, S.-H. Carbon monoxide-tolerant platinum nanoparticle catalysts on defect engineered graphene ACS Nano 2011, 5, 805-810 10.1021/nn1017395
-
(2011)
ACS Nano
, vol.5
, pp. 805-810
-
-
Kim, G.1
Jhi, S.-H.2
-
48
-
-
0035120062
-
Model for polymer electrolyte fuel cell operation on reformate feed-effects of CO, dilution, and high fuel utilization
-
Springer, T. E.; Rockward, T.; Zawodzinski, T. A.; Gottesfeld, S. Model for polymer electrolyte fuel cell operation on reformate feed-effects of CO, dilution, and high fuel utilization J. Electrochem. Soc. 2001, 148, A11-A23 10.1149/1.1344516
-
(2001)
J. Electrochem. Soc.
, vol.148
, pp. A11-A23
-
-
Springer, T.E.1
Rockward, T.2
Zawodzinski, T.A.3
Gottesfeld, S.4
-
49
-
-
79952447661
-
2 from formic acid. A comparative study of the catalytic behavior of Pt metals on a carbon support
-
2 from formic acid. A comparative study of the catalytic behavior of Pt metals on a carbon support J. Catal. 2011, 279, 213-219 10.1016/j.jcat.2011.01.023
-
(2011)
J. Catal.
, vol.279
, pp. 213-219
-
-
Solymosi, F.1
Koos, A.2
Liliom, N.3
Ugrai, I.4
-
50
-
-
33749620014
-
Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction
-
Yasaka, Y.; Yoshida, K.; Wakai, C.; Matubayasi, N.; Nakahara, M. Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction J. Phys. Chem. A 2006, 110, 11082-11090 10.1021/jp0626768
-
(2006)
J. Phys. Chem. A
, vol.110
, pp. 11082-11090
-
-
Yasaka, Y.1
Yoshida, K.2
Wakai, C.3
Matubayasi, N.4
Nakahara, M.5
-
51
-
-
84989227737
-
Bimetallic nanocrystals: Syntheses, properties, and applications
-
Gilroy, K. D.; Ruditskiy, A.; Peng, H.-C.; Qin, D.; Xia, Y. Bimetallic nanocrystals: syntheses, properties, and applications Chem. Rev. 2016, 116, 10414-10472 10.1021/acs.chemrev.6b00211
-
(2016)
Chem. Rev.
, vol.116
, pp. 10414-10472
-
-
Gilroy, K.D.1
Ruditskiy, A.2
Peng, H.-C.3
Qin, D.4
Xia, Y.5
-
52
-
-
84945312986
-
Core-shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis
-
Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A. V.; Peng, D.-L.; Zboril, R.; Varma, R. S. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis Chem. Soc. Rev. 2015, 44, 7540-7590 10.1039/C5CS00343A
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 7540-7590
-
-
Gawande, M.B.1
Goswami, A.2
Asefa, T.3
Guo, H.4
Biradar, A.V.5
Peng, D.-L.6
Zboril, R.7
Varma, R.S.8
-
53
-
-
79961162183
-
Synergistic catalysis of metal-organic framework-immobilized Au-Pd Nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage
-
Gu, X.; Lu, Z.-H.; Jiang, H.-L.; Akita, T.; Xu, Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd Nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage J. Am. Chem. Soc. 2011, 133, 11822-11825 10.1021/ja200122f
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 11822-11825
-
-
Gu, X.1
Lu, Z.-H.2
Jiang, H.-L.3
Akita, T.4
Xu, Q.5
-
54
-
-
79955859884
-
Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst
-
Tedsree, K.; Li, T.; Jones, S.; Chan, W. A. C.; Yu, K. M. K.; Bagot, P. J. A.; Marquis, E. A.; Smith, G. D. W.; Tsang, S. C. E. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst Nat. Nanotechnol. 2011, 6, 302-307 10.1038/nnano.2011.42
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 302-307
-
-
Tedsree, K.1
Li, T.2
Jones, S.3
Chan, W.A.C.4
Yu, K.M.K.5
Bagot, P.J.A.6
Marquis, E.A.7
Smith, G.D.W.8
Tsang, S.C.E.9
-
55
-
-
77957081364
-
Novel PdAu@Au/C core-shell catalyst: Superior activity and selectivity in formic acid decomposition for hydrogen generation
-
Huang, Y.; Zhou, X.; Yin, M.; Liu, C.; Xing, W. Novel PdAu@Au/C core-shell catalyst: superior activity and selectivity in formic acid decomposition for hydrogen generation Chem. Mater. 2010, 22, 5122-5128 10.1021/cm101285f
-
(2010)
Chem. Mater.
, vol.22
, pp. 5122-5128
-
-
Huang, Y.1
Zhou, X.2
Yin, M.3
Liu, C.4
Xing, W.5
-
56
-
-
47949133010
-
High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C
-
Zhou, X.; Huang, Y.; Xing, W.; Liu, C.; Liao, J.; Lu, T. High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C Chem. Commun. 2008, 3540-3543 10.1039/b803661f
-
(2008)
Chem. Commun.
, pp. 3540-3543
-
-
Zhou, X.1
Huang, Y.2
Xing, W.3
Liu, C.4
Liao, J.5
Lu, T.6
-
57
-
-
84875330481
-
Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid
-
Zhang, S.; Metin, Ö.; Su, D.; Sun, S. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid Angew. Chem., Int. Ed. 2013, 52, 3681-3684 10.1002/anie.201300276
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 3681-3684
-
-
Zhang, S.1
Metin, Ö.2
Su, D.3
Sun, S.4
-
58
-
-
84921054047
-
Immobilizing highly catalytically active noble metal nanoparticles on reduced graphene oxide: A non-noble metal sacrificial approach
-
Chen, Y.; Zhu, Q.-L.; Tsumori, N.; Xu, Q. Immobilizing highly catalytically active noble metal nanoparticles on reduced graphene oxide: A non-noble metal sacrificial approach J. Am. Chem. Soc. 2015, 137, 106-109 10.1021/ja511511q
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 106-109
-
-
Chen, Y.1
Zhu, Q.-L.2
Tsumori, N.3
Xu, Q.4
-
59
-
-
84941755526
-
Immobilizing extremely catalytically active palladium nanoparticles to carbon nanospheres: A weakly-capping growth approach
-
Zhu, Q.-L.; Tsumori, N.; Xu, Q. Immobilizing extremely catalytically active palladium nanoparticles to carbon nanospheres: A weakly-capping growth approach J. Am. Chem. Soc. 2015, 137, 11743-11748 10.1021/jacs.5b06707
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 11743-11748
-
-
Zhu, Q.-L.1
Tsumori, N.2
Xu, Q.3
-
60
-
-
85033692381
-
-
2 consumption data published for the 2017 Honda Clarity Fuel Cell. The range calculation is based on the Japanese JC08 drive cycle. For more information, see
-
2 consumption data published for the 2017 Honda Clarity Fuel Cell. The range calculation is based on the Japanese JC08 drive cycle. For more information, see: Honda. http://world.honda.com/news/2016/4160310eng.html (2016).
-
(2016)
Honda
-
-
-
61
-
-
85027933869
-
Simple continuous high-pressure hydrogen production and separation system from formic acid under mild temperatures
-
Iguchi, M.; Himeda, Y.; Manaka, Y.; Matsuoka, K.; Kawanami, H. Simple continuous high-pressure hydrogen production and separation system from formic acid under mild temperatures ChemCatChem 2016, 8, 886-890 10.1002/cctc.201501296
-
(2016)
ChemCatChem
, vol.8
, pp. 886-890
-
-
Iguchi, M.1
Himeda, Y.2
Manaka, Y.3
Matsuoka, K.4
Kawanami, H.5
-
62
-
-
84901922430
-
Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
-
Moret, S.; Dyson, P. J.; Laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media Nat. Commun. 2014, 4017 10.1038/ncomms5017
-
(2014)
Nat. Commun.
, pp. 4017
-
-
Moret, S.1
Dyson, P.J.2
Laurenczy, G.3
-
64
-
-
79960204207
-
Energy efficiency analysis: Biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems
-
Huang, W.-D.; Zhang, Y.-H. P. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems PLoS One 2011, 6, e22113 10.1371/journal.pone.0022113
-
(2011)
PLoS One
, vol.6
, pp. e22113
-
-
Huang, W.-D.1
Zhang, Y.-H.P.2
-
65
-
-
70350599533
-
Continuous hydrogen generation from formic acid: Highly active and stable ruthenium catalysts
-
Boddien, A.; Loges, B.; Junge, H.; Gaertner, F.; Noyes, J. R.; Beller, M. Continuous hydrogen generation from formic acid: highly active and stable ruthenium catalysts Adv. Synth. Catal. 2009, 351, 2517-2520 10.1002/adsc.200900431
-
(2009)
Adv. Synth. Catal.
, vol.351
, pp. 2517-2520
-
-
Boddien, A.1
Loges, B.2
Junge, H.3
Gaertner, F.4
Noyes, J.R.5
Beller, M.6
-
66
-
-
84870044762
-
Towards the development of a hydrogen battery
-
Boddien, A.; Federsel, C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Laurenczy, G.; Beller, M. Towards the development of a hydrogen battery Energy Environ. Sci. 2012, 5, 8907-8911 10.1039/c2ee22043a
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8907-8911
-
-
Boddien, A.1
Federsel, C.2
Sponholz, P.3
Mellmann, D.4
Jackstell, R.5
Junge, H.6
Laurenczy, G.7
Beller, M.8
-
67
-
-
47049083045
-
A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst
-
Fellay, C.; Dyson, P. J.; Laurenczy, G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst Angew. Chem., Int. Ed. 2008, 47, 3966-3968 10.1002/anie.200800320
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 3966-3968
-
-
Fellay, C.1
Dyson, P.J.2
Laurenczy, G.3
-
68
-
-
63849314522
-
Selective formic acid decomposition for high-pressure hydrogen generation: A mechanistic study
-
Fellay, C.; Yan, N.; Dyson, P. J.; Laurenczy, G. Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study Chem.-Eur. J. 2009, 15, 3752-3760 10.1002/chem.200801824
-
(2009)
Chem. - Eur. J.
, vol.15
, pp. 3752-3760
-
-
Fellay, C.1
Yan, N.2
Dyson, P.J.3
Laurenczy, G.4
-
69
-
-
84902256616
-
Highly efficient reversible hydrogenation of carbon dioxide to formates using a ruthenium PNP-pincer catalyst
-
Filonenko, G. A.; van Putten, R.; Schulpen, E. N.; Hensen, E. J. M.; Pidko, E. A. Highly efficient reversible hydrogenation of carbon dioxide to formates using a ruthenium PNP-pincer catalyst ChemCatChem 2014, 6, 1526-1530 10.1002/cctc.201402119
-
(2014)
ChemCatChem
, vol.6
, pp. 1526-1530
-
-
Filonenko, G.A.1
Van Putten, R.2
Schulpen, E.N.3
Hensen, E.J.M.4
Pidko, E.A.5
-
70
-
-
84966377299
-
3-pincer ligand
-
3-pincer ligand Chem.-Asian J. 2016, 11, 1357-1360 10.1002/asia.201600169
-
(2016)
Chem. - Asian J.
, vol.11
, pp. 1357-1360
-
-
Pan, Y.1
Pan, C.L.2
Zhang, Y.3
Li, H.4
Min, S.5
Guo, X.6
Zheng, B.7
Chen, H.8
Anders, A.9
Lai, Z.10
Zheng, J.11
Huang, K.-W.12
-
71
-
-
84860233505
-
2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
-
2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures Nat. Chem. 2012, 4, 383-388 10.1038/nchem.1295
-
(2012)
Nat. Chem.
, vol.4
, pp. 383-388
-
-
Hull, J.F.1
Himeda, Y.2
Wang, W.-H.3
Hashiguchi, B.4
Periana, R.5
Szalda, D.J.6
Muckerman, J.T.7
Fujita, E.8
-
72
-
-
84940440689
-
Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N′-diimine ligand in water
-
Wang, Z.; Lu, S.-M.; Li, J.; Wang, J.; Li, C. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N′-diimine ligand in water Chem.-Eur. J. 2015, 21, 12592-12595 10.1002/chem.201502086
-
(2015)
Chem. - Eur. J.
, vol.21
, pp. 12592-12595
-
-
Wang, Z.1
Lu, S.-M.2
Li, J.3
Wang, J.4
Li, C.5
-
73
-
-
80053156426
-
Efficient dehydrogenation of formic acid using an iron catalyst
-
Boddien, A.; Mellmann, D.; Gaertner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Efficient dehydrogenation of formic acid using an iron catalyst Science 2011, 333, 1733-1736 10.1126/science.1206613
-
(2011)
Science
, vol.333
, pp. 1733-1736
-
-
Boddien, A.1
Mellmann, D.2
Gaertner, F.3
Jackstell, R.4
Junge, H.5
Dyson, P.J.6
Laurenczy, G.7
Ludwig, R.8
Beller, M.9
-
74
-
-
84904909354
-
Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst
-
Bielinski, E. A.; Lagaditis, P. O.; Zhang, Y.; Mercado, B. Q.; Würtele, C.; Bernskoetter, W. H.; Hazari, N.; Schneider, S. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst J. Am. Chem. Soc. 2014, 136, 10234-10237 10.1021/ja505241x
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 10234-10237
-
-
Bielinski, E.A.1
Lagaditis, P.O.2
Zhang, Y.3
Mercado, B.Q.4
Würtele, C.5
Bernskoetter, W.H.6
Hazari, N.7
Schneider, S.8
-
76
-
-
84991712958
-
Carbon dioxide to methanol: The aqueous catalytic way at room temperature
-
Sordakis, K.; Tsurusaki, A.; Iguchi, M.; Kawanami, H.; Himeda, Y.; Laurenczy, G. Carbon dioxide to methanol: the aqueous catalytic way at room temperature Chem.-Eur. J. 2016, 22, 15605-15608 10.1002/chem.201603407
-
(2016)
Chem. - Eur. J.
, vol.22
, pp. 15605-15608
-
-
Sordakis, K.1
Tsurusaki, A.2
Iguchi, M.3
Kawanami, H.4
Himeda, Y.5
Laurenczy, G.6
-
77
-
-
85035800092
-
-
Team Fast. http://www.teamfast.nl/ (2016).
-
(2016)
Team Fast
-
-
-
78
-
-
85033699135
-
-
Also seen in a presentation by; at ICEF
-
Also seen in a presentation by Guo, X.; Zheng, J.; Huang, K.-W. at ICEF, 2016.
-
(2016)
-
-
Guo, X.1
Zheng, J.2
Huang, K.-W.3
|