메뉴 건너뛰기




Volumn 70, Issue 1-3, 2006, Pages 409-419

Short-term ANN load forecasting from limited data using generalization learning strategies

Author keywords

Day ahead forecasting; Genetic algorithm; Open electricity market; Regularization

Indexed keywords

ELECTRIC LOAD FORECASTING; ERROR DETECTION; GENETIC ALGORITHMS; LEARNING SYSTEMS;

EID: 33750297514     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2005.12.131     Document Type: Article
Times cited : (58)

References (34)
  • 2
    • 0031122888 scopus 로고    scopus 로고
    • Evolutionary computation: comments on the history and current state
    • Baeck T., Hammel U., and Schwefel H.-P. Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1 (1997) 3-17
    • (1997) IEEE Trans. Evol. Comput. , vol.1 , pp. 3-17
    • Baeck, T.1    Hammel, U.2    Schwefel, H.-P.3
  • 6
    • 0033874583 scopus 로고    scopus 로고
    • Forecasting loads and prices in competitive power markets
    • Bunn D.W. Forecasting loads and prices in competitive power markets. Proc. IEEE 88 (2000) 163-169
    • (2000) Proc. IEEE , vol.88 , pp. 163-169
    • Bunn, D.W.1
  • 7
    • 0022246535 scopus 로고
    • Economic and operational context of electric load prediction
    • Bunn D.W., and Farmer E.D. (Eds), Wiley, Newyork
    • Bunn D.W., and Farmer E.D. Economic and operational context of electric load prediction. In: Bunn D.W., and Farmer E.D. (Eds). Comparative Models for Electrical Load Forecasting (1985), Wiley, Newyork 3-12
    • (1985) Comparative Models for Electrical Load Forecasting , pp. 3-12
    • Bunn, D.W.1    Farmer, E.D.2
  • 8
    • 0037130422 scopus 로고    scopus 로고
    • Z.S.H. Chan, H.W. Ngan, A.B. Rad, T.K. Ho, Alleviating "overfitting" via genetically-regularised neural network, Electronics Letter, 2002.
  • 9
    • 0034138664 scopus 로고    scopus 로고
    • Very short-term load forecasting using artificial neural networks
    • Charytoniuk W., and Chen M.-S. Very short-term load forecasting using artificial neural networks. IEEE Trans. Power Syst. 15 (2000) 263-268
    • (2000) IEEE Trans. Power Syst. , vol.15 , pp. 263-268
    • Charytoniuk, W.1    Chen, M.-S.2
  • 10
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
    • Chen S. Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Trans. Neural Networks 10 (1999) 1239-1243
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1239-1243
    • Chen, S.1
  • 11
    • 0032649785 scopus 로고    scopus 로고
    • Experience with FNN models for medium term power demand predictions
    • Doveh E., Feigin P., Greig D., and Hyams L. Experience with FNN models for medium term power demand predictions. IEEE Trans. Power Syst. 14 (1999) 538-546
    • (1999) IEEE Trans. Power Syst. , vol.14 , pp. 538-546
    • Doveh, E.1    Feigin, P.2    Greig, D.3    Hyams, L.4
  • 14
    • 0026257503 scopus 로고
    • Enhancement, implementation and performance of an adaptive short-term load forecasting algorithm
    • Grady W.M., Groce L.A., Huebner T.M., Lu Q.C., and Crawford M.M. Enhancement, implementation and performance of an adaptive short-term load forecasting algorithm. IEEE Trans. Power Systems 6 (1991) 1404-1410
    • (1991) IEEE Trans. Power Systems , vol.6 , pp. 1404-1410
    • Grady, W.M.1    Groce, L.A.2    Huebner, T.M.3    Lu, Q.C.4    Crawford, M.M.5
  • 15
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: a review and evaluation
    • Hippert H.S., Pedreira C.E., and Souza R.C. Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. Power Systems 16 (2001) 44-55
    • (2001) IEEE Trans. Power Systems , vol.16 , pp. 44-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3
  • 18
    • 0032203310 scopus 로고    scopus 로고
    • ANNSTLF-artificial neural network short-term load forecaster-generation three
    • Khotanzad A., Afkhami-Rohani R., and Maratukulam D.J. ANNSTLF-artificial neural network short-term load forecaster-generation three. IEEE Trans. Power Systems 134 (1998) 1413-1422
    • (1998) IEEE Trans. Power Systems , vol.134 , pp. 1413-1422
    • Khotanzad, A.1    Afkhami-Rohani, R.2    Maratukulam, D.J.3
  • 21
    • 0008200145 scopus 로고    scopus 로고
    • Adaptive regularization in neural network modeling
    • Orr G.B., and Muller K.-R. (Eds), Springer, Berlin
    • Larsen J., Svarer C., Andersen L.N., and Hansen L.K. Adaptive regularization in neural network modeling. In: Orr G.B., and Muller K.-R. (Eds). Neural Networks: Tricks of the Trade (1998), Springer, Berlin 113-132
    • (1998) Neural Networks: Tricks of the Trade , pp. 113-132
    • Larsen, J.1    Svarer, C.2    Andersen, L.N.3    Hansen, L.K.4
  • 22
    • 0024054289 scopus 로고
    • An adaptive algorithm for short-term multinode load forecasting in power systems
    • Lu Q.C., Grady W.M., and Crawford M.M. An adaptive algorithm for short-term multinode load forecasting in power systems. IEEE Trans. Circuits Syst. 35 (1988) 1004-1010
    • (1988) IEEE Trans. Circuits Syst. , vol.35 , pp. 1004-1010
    • Lu, Q.C.1    Grady, W.M.2    Crawford, M.M.3
  • 23
    • 33750368087 scopus 로고    scopus 로고
    • D.J.C. MacKay, A practical Bayesian framework for backprop networks, in: J.E. Moody, S.J. Hanson, R.P. Lippmann, (Eds.), Adv. Neural Inform. Process. Syst., 4 (1992) 839-846.
  • 24
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks
    • MacKay D.J.C. Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks. Comput Neural Syst. 6 (1995) 469-505
    • (1995) Comput Neural Syst. , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 25
    • 33750355693 scopus 로고    scopus 로고
    • D.J.C. MacKay, Bayesian methods for neural networks - FAQ, vol. 2001, 2000.
  • 27
    • 33750381011 scopus 로고    scopus 로고
    • R.M. Neal, Bayesian Training of Backpropagation Networks by the Hybrid Monte-Carlo Method, Connectionist Research Group, Department of Computer Science, University of Toronto CRG-TR-92-1, 10 April 1992.
  • 28
    • 33750373372 scopus 로고    scopus 로고
    • R.M. Neal, Probabilistic Inference Using Markov Chain Monte-Carlo Methods, Department of Computer Science, University of Toronto CRG-TR-93-1, 25 September 1993.
  • 29
    • 33750346419 scopus 로고    scopus 로고
    • R.M. Neal, Bayesian Learning for Neural Networks; Springer, New York, 1996.
  • 30
    • 22444452997 scopus 로고    scopus 로고
    • A Simple Trick for Estimating the Weight Decay Parameter
    • Orr G.B., and Muller K.-R. (Eds), Springer, Berlin
    • Rognvaldsson T. A Simple Trick for Estimating the Weight Decay Parameter. In: Orr G.B., and Muller K.-R. (Eds). Neural Networks: Tricks of the Trade (1998), Springer, Berlin 71-92
    • (1998) Neural Networks: Tricks of the Trade , pp. 71-92
    • Rognvaldsson, T.1
  • 32
    • 77956801575 scopus 로고    scopus 로고
    • K. Siwek, S. Osowski, Regularization of neural networks for improved load forecasting in power system, presented at ICECS 2001, 2001.
  • 33
    • 84958675557 scopus 로고    scopus 로고
    • E.H. Tito, G. Zaverucha, M. Vellasco, M. Pacheco, Bayesian neural networks for electric load forecasting, presented at International Conference on Neural Information Processing, 1999.
  • 34
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • Yao X., and Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Networks 8 (1997) 694-713
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 694-713
    • Yao, X.1    Liu, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.