메뉴 건너뛰기




Volumn 186, Issue , 2016, Pages 22-34

Design of experiments and focused grid search for neural network parameter optimization

Author keywords

Artificial Neural Network; Design of Experiment; Focused Grid Search; Machining; Tuning

Indexed keywords

DESIGN; FORECASTING; MACHINING; MACHINING CENTERS; NETWORK ARCHITECTURE; NEURAL NETWORKS; SURFACE ROUGHNESS; TUNING;

EID: 84956634384     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.12.061     Document Type: Article
Times cited : (202)

References (49)
  • 1
    • 34247328174 scopus 로고    scopus 로고
    • A surface roughness prediction model for hard turning process
    • Singh D., Rao P.V. A surface roughness prediction model for hard turning process. Int. J. Adv. Manuf. Technol. 2007, 32:1115-1124. 10.1007/s00170-006-0429-2.
    • (2007) Int. J. Adv. Manuf. Technol. , vol.32 , pp. 1115-1124
    • Singh, D.1    Rao, P.V.2
  • 2
    • 33644749301 scopus 로고    scopus 로고
    • Approach to optimization of cutting conditions by using artificial neural networks
    • Cus F., Zuperl U. Approach to optimization of cutting conditions by using artificial neural networks. J. Mater. Process. Technol. 2006, 173:281-290. 10.1016/j.jmatprotec.2005.04.123.
    • (2006) J. Mater. Process. Technol. , vol.173 , pp. 281-290
    • Cus, F.1    Zuperl, U.2
  • 3
    • 84862283893 scopus 로고    scopus 로고
    • Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel
    • Çaydaş U., Ekici S. Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J. Intell. Manuf. 2012, 23:639-650. 10.1007/s10845-010-0415-2.
    • (2012) J. Intell. Manuf. , vol.23 , pp. 639-650
    • Çaydaş, U.1    Ekici, S.2
  • 4
    • 79751535484 scopus 로고    scopus 로고
    • Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm
    • Kilickap E., Huseyinoglu M., Yardimeden A. Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. Int. J. Adv. Manuf. Technol. 2011, 52:79-88. 10.1007/s00170-010-2710-7.
    • (2011) Int. J. Adv. Manuf. Technol. , vol.52 , pp. 79-88
    • Kilickap, E.1    Huseyinoglu, M.2    Yardimeden, A.3
  • 5
    • 77952091327 scopus 로고    scopus 로고
    • Artificial neural networks for surface roughness prediction when face milling Al 7075-T7351
    • Muñoz-Escalona P., Maropoulos P.G. Artificial neural networks for surface roughness prediction when face milling Al 7075-T7351. J. Mater. Eng. Perform. 2010, 19:185-193. 10.1007/s11665-009-9452-4.
    • (2010) J. Mater. Eng. Perform. , vol.19 , pp. 185-193
    • Muñoz-Escalona, P.1    Maropoulos, P.G.2
  • 6
    • 62949132164 scopus 로고    scopus 로고
    • Prediction and control of surface roughness in CNC lathe using artificial neural network
    • Karayel D. Prediction and control of surface roughness in CNC lathe using artificial neural network. J. Mater. Process. Technol. 2009, 209:3125-3137. 10.1016/j.jmatprotec.2008.07.023.
    • (2009) J. Mater. Process. Technol. , vol.209 , pp. 3125-3137
    • Karayel, D.1
  • 7
    • 43449102787 scopus 로고    scopus 로고
    • Influence of machining parameters on fatigue endurance limit of AISI 4140 steel
    • Lopes K.S.S., Sales W.F., Palma E.S. Influence of machining parameters on fatigue endurance limit of AISI 4140 steel. J. Braz. Soc. Mech. Sci. Eng. 2008, 30:77-83. 10.1590/S1678-58782008000100011.
    • (2008) J. Braz. Soc. Mech. Sci. Eng. , vol.30 , pp. 77-83
    • Lopes, K.S.S.1    Sales, W.F.2    Palma, E.S.3
  • 8
    • 33748276634 scopus 로고    scopus 로고
    • Multiple response optimization using Taguchi methodology and neuro-fuzzy based model
    • Antony J., Anand R.B., Kumar M., Tiwari M.K. Multiple response optimization using Taguchi methodology and neuro-fuzzy based model. J. Manuf. Technol. Manag. 2006, 17:908-925. 10.1108/17410380610688232.
    • (2006) J. Manuf. Technol. Manag. , vol.17 , pp. 908-925
    • Antony, J.1    Anand, R.B.2    Kumar, M.3    Tiwari, M.K.4
  • 9
    • 77955516396 scopus 로고    scopus 로고
    • Finding optimal model parameters by deterministic and annealed focused grid search
    • Jiménez Á.B., Lázaro J.L., Dorronsoro J.R. Finding optimal model parameters by deterministic and annealed focused grid search. Neurocomputing 2009, 72:2824-2832. 10.1016/j.neucom.2008.09.024.
    • (2009) Neurocomputing , vol.72 , pp. 2824-2832
    • Jiménez Á, B.1    Lázaro, J.L.2    Dorronsoro, J.R.3
  • 10
    • 58349093492 scopus 로고    scopus 로고
    • Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process
    • Correa M., Bielza C., Pamies-Teixeira J. Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 2009, 36:7270-7279. 10.1016/j.eswa.2008.09.024.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7270-7279
    • Correa, M.1    Bielza, C.2    Pamies-Teixeira, J.3
  • 11
    • 42949106000 scopus 로고    scopus 로고
    • A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method
    • Çaydaş U., Hasçalik A. A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 2008, 202:574-582. 10.1016/j.jmatprotec.2007.10.024.
    • (2008) J. Mater. Process. Technol. , vol.202 , pp. 574-582
    • Çaydaş, U.1    Hasçalik, A.2
  • 14
    • 45749105080 scopus 로고    scopus 로고
    • Surface roughness prediction model for CNC machining of polypropylene
    • Dhokia V.G., Kumar S., Vichare P., Newman S.T., Allen R.D. Surface roughness prediction model for CNC machining of polypropylene. J. Eng. Manuf. 2008, 222:137-153. 10.1243/09544054jem884.
    • (2008) J. Eng. Manuf. , vol.222 , pp. 137-153
    • Dhokia, V.G.1    Kumar, S.2    Vichare, P.3    Newman, S.T.4    Allen, R.D.5
  • 15
    • 33746257756 scopus 로고    scopus 로고
    • Neural network and regression spline value function approximations for stochastic dynamic programming
    • Cervellera C., Wen A., Chen V.C.P. Neural network and regression spline value function approximations for stochastic dynamic programming. Comput. Oper. Res. 2007, 34:70-90. 10.1016/j.cor.2005.02.043.
    • (2007) Comput. Oper. Res. , vol.34 , pp. 70-90
    • Cervellera, C.1    Wen, A.2    Chen, V.C.P.3
  • 16
    • 50849135518 scopus 로고    scopus 로고
    • A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling
    • Karnik S.R., Gaitonde V.N., Davim J.P. A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling. Int. J. Adv. Manuf. Technol. 2008, 38:868-883. 10.1007/s00170-007-1140-7.
    • (2008) Int. J. Adv. Manuf. Technol. , vol.38 , pp. 868-883
    • Karnik, S.R.1    Gaitonde, V.N.2    Davim, J.P.3
  • 17
    • 33750317589 scopus 로고    scopus 로고
    • Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN
    • Bagci E., Işik B. Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN. Int. J. Adv. Manuf. Technol. 2006, 31:10-17. 10.1007/s00170-005-0175-x.
    • (2006) Int. J. Adv. Manuf. Technol. , vol.31 , pp. 10-17
    • Bagci, E.1    Işik, B.2
  • 19
    • 0038298770 scopus 로고    scopus 로고
    • Predicting surface roughness in machining: A review
    • Benardos P.G., Vosniakos G.C. Predicting surface roughness in machining: A review. Int. J. Mach. Tools Manuf. 2003, 43:833-844. 10.1016/S0890-6955(03)00059-2.
    • (2003) Int. J. Mach. Tools Manuf. , vol.43 , pp. 833-844
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 20
    • 46249124721 scopus 로고    scopus 로고
    • Estimation of cutting forces and surface roughness for hard turning using neural networks
    • Sharma V.S., Dhiman S., Sehgal R., Sharma S.K. Estimation of cutting forces and surface roughness for hard turning using neural networks. J. Intell. Manuf. 2008, 19:473-483. 10.1007/s10845-008-0097-1.
    • (2008) J. Intell. Manuf. , vol.19 , pp. 473-483
    • Sharma, V.S.1    Dhiman, S.2    Sehgal, R.3    Sharma, S.K.4
  • 21
    • 33646773258 scopus 로고    scopus 로고
    • Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm
    • Oktem H., Erzurumlu T., Erzincanli F. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Mater. Des. 2006, 27:735-744. 10.1016/j.matdes.2005.01.010.
    • (2006) Mater. Des. , vol.27 , pp. 735-744
    • Oktem, H.1    Erzurumlu, T.2    Erzincanli, F.3
  • 22
    • 33746907798 scopus 로고    scopus 로고
    • Study on the prediction model of surface roughness for side milling operations
    • Chang C.-K., Lu H.S. Study on the prediction model of surface roughness for side milling operations. Int. J. Adv. Manuf. Technol. 2006, 29:867-878. 10.1007/s00170-005-2604-2.
    • (2006) Int. J. Adv. Manuf. Technol. , vol.29 , pp. 867-878
    • Chang, C.-K.1    Lu, H.S.2
  • 23
    • 27744485019 scopus 로고    scopus 로고
    • Surface roughness prediction in turning using artificial neural network
    • Pal S.K., Chakraborty D. Surface roughness prediction in turning using artificial neural network. Neural Comput. Appl. 2005, 14:319-324. 10.1007/s00521-005-0468-x.
    • (2005) Neural Comput. Appl. , vol.14 , pp. 319-324
    • Pal, S.K.1    Chakraborty, D.2
  • 24
    • 44749086674 scopus 로고    scopus 로고
    • Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models
    • Davim J.P., Gaitonde V.N., Karnik S.R. Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. J. Mater. Process. Technol. 2008, 205:16-23. 10.1016/j.jmatprotec.2007.11.082.
    • (2008) J. Mater. Process. Technol. , vol.205 , pp. 16-23
    • Davim, J.P.1    Gaitonde, V.N.2    Karnik, S.R.3
  • 25
    • 78650171110 scopus 로고    scopus 로고
    • Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm
    • Yang S.H., Natarajan U., Sekar M., Palani S. Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm. Int. J. Adv. Manuf. Technol. 2010, 51:965-971. 10.1007/s00170-010-2668-5.
    • (2010) Int. J. Adv. Manuf. Technol. , vol.51 , pp. 965-971
    • Yang, S.H.1    Natarajan, U.2    Sekar, M.3    Palani, S.4
  • 26
    • 71749087451 scopus 로고    scopus 로고
    • Prediction of surface roughness in the end milling machining using artificial neural network
    • Zain A.M., Haron H., Sharif S. Prediction of surface roughness in the end milling machining using artificial neural network. Expert Syst. Appl. 2010, 37:1755-1768. 10.1016/j.eswa.2009.07.033.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1755-1768
    • Zain, A.M.1    Haron, H.2    Sharif, S.3
  • 27
    • 33645556229 scopus 로고    scopus 로고
    • Prediction of surface roughness of turned surfaces using neural networks
    • Zhong Z.W., Khoo L.P., Han S.T. Prediction of surface roughness of turned surfaces using neural networks. Int. J. Adv. Manuf. Technol. 2006, 28:688-693. 10.1007/s00170-004-2429-4.
    • (2006) Int. J. Adv. Manuf. Technol. , vol.28 , pp. 688-693
    • Zhong, Z.W.1    Khoo, L.P.2    Han, S.T.3
  • 28
    • 12444249998 scopus 로고    scopus 로고
    • Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
    • Özel T., Karpat Y. Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int. J. Mach. Tools Manuf. 2005, 45:467-479. 10.1016/j.ijmachtools.2004.09.007.
    • (2005) Int. J. Mach. Tools Manuf. , vol.45 , pp. 467-479
    • Özel, T.1    Karpat, Y.2
  • 29
    • 0036815452 scopus 로고    scopus 로고
    • Prediction of surface roughness in CNC face milling using neural networks and Taguchi' s design of experiments
    • Benardos P.G., Vosniakos G.C. Prediction of surface roughness in CNC face milling using neural networks and Taguchi' s design of experiments. Robot. Comput. Integr. Manuf. 2002, 18:343-354. 10.1016/S0736-5845(02)00005-4.
    • (2002) Robot. Comput. Integr. Manuf. , vol.18 , pp. 343-354
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 30
    • 38349091129 scopus 로고    scopus 로고
    • Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization
    • Karpat Y., Özel T. Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization. Int. J. Adv. Manuf. Technol. 2007, 35:234-247. 10.1007/s00170-006-0719-8.
    • (2007) Int. J. Adv. Manuf. Technol. , vol.35 , pp. 234-247
    • Karpat, Y.1    Özel, T.2
  • 31
    • 77949530093 scopus 로고    scopus 로고
    • Global Optimization Methods for Designing and Training Feedforward Artificial Neural Networks
    • Zanchettin C., Ludermir T.B. Global Optimization Methods for Designing and Training Feedforward Artificial Neural Networks. Adv. Neural Netw. 2007, 14:328-337.
    • (2007) Adv. Neural Netw. , vol.14 , pp. 328-337
    • Zanchettin, C.1    Ludermir, T.B.2
  • 32
    • 0027542979 scopus 로고
    • Approach to planning for a designed industrial experiment
    • Coleman D.E., Montgomery D.C., Systematic A. Approach to planning for a designed industrial experiment. Technometrics 1993, 35:1-12. 10.2307/1269285.
    • (1993) Technometrics , vol.35 , pp. 1-12
    • Coleman, D.E.1    Montgomery, D.C.2    Systematic, A.3
  • 33
    • 28544452496 scopus 로고    scopus 로고
    • Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends
    • Kuo C.-F.J., Wu Y.-S. Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends. Int. J. Adv. Manuf. Technol. 2006, 27:455-461. 10.1007/s00170-004-2215-3.
    • (2006) Int. J. Adv. Manuf. Technol. , vol.27 , pp. 455-461
    • Kuo, C.-F.J.1    Wu, Y.-S.2
  • 34
    • 42649138966 scopus 로고    scopus 로고
    • Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel
    • Quiza R., Figueira L., Davim J.P. Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel. Int. J. Adv. Manuf. Technol. 2008, 37:641-648. 10.1007/s00170-007-0999-7.
    • (2008) Int. J. Adv. Manuf. Technol. , vol.37 , pp. 641-648
    • Quiza, R.1    Figueira, L.2    Davim, J.P.3
  • 35
    • 77955658249 scopus 로고    scopus 로고
    • The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process
    • Lasheras J.A.V., Vilán F.S., García Nieto J.J.C., Díaz P.J. The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process. Math. Comput. Model. 2010, 52:1169-1176. 10.1016/j.mcm.2010.03.007.
    • (2010) Math. Comput. Model. , vol.52 , pp. 1169-1176
    • Lasheras, J.A.V.1    Vilán, F.S.2    García Nieto, J.J.C.3    Díaz, P.J.4
  • 37
    • 70349467760 scopus 로고    scopus 로고
    • A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN
    • Chen W.-C., Hsu Y.-Y., Hsieh L.-F., Tai P.-H. A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN. Expert Syst. Appl. 2010, 37:716-726. 10.1016/j.eswa.2009.05.098.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 716-726
    • Chen, W.-C.1    Hsu, Y.-Y.2    Hsieh, L.-F.3    Tai, P.-H.4
  • 39
    • 58149472216 scopus 로고    scopus 로고
    • Design of experiments on neural network's training for nonlinear time series forecasting
    • Balestrassi P.P., Popova E., Paiva A.P., Marangon Lima J.W. Design of experiments on neural network's training for nonlinear time series forecasting. Neurocomputing 2009, 72:1160-1178. 10.1016/j.neucom.2008.02.002.
    • (2009) Neurocomputing , vol.72 , pp. 1160-1178
    • Balestrassi, P.P.1    Popova, E.2    Paiva, A.P.3    Marangon Lima, J.W.4
  • 40
    • 50849140143 scopus 로고    scopus 로고
    • Simulating electricity spot prices in brazil using neural network and design of experiments
    • A.R. Queiroz, F.A. Oliveira, J.W.M. Lima, P.P. Balestrassi, Simulating electricity spot prices in brazil using neural network and design of experiments, In: Proceedings of the IEEE Lausanne PowerTech, 2007, pp. 2029-2034 . http://dx.doi.org/10.1109/PCT.2007.4538630.
    • (2007) Proceedings of the IEEE Lausanne PowerTech , pp. 2029-2034
    • Queiroz, A.R.1    Oliveira, F.A.2    Lima, J.W.M.3    Balestrassi, P.P.4
  • 41
    • 25144463079 scopus 로고    scopus 로고
    • State-of-the-art review: a user's guide to the brave new world of designing simulation experiments
    • Kleijnen J.P.C., Sanchez S.M., Lucas T.W., Cioppa T.M. State-of-the-art review: a user's guide to the brave new world of designing simulation experiments. Inf. J. Comput. 2005, 17:263-289. 10.1287/ijoc.1050.0136.
    • (2005) Inf. J. Comput. , vol.17 , pp. 263-289
    • Kleijnen, J.P.C.1    Sanchez, S.M.2    Lucas, T.W.3    Cioppa, T.M.4
  • 42
    • 0002525028 scopus 로고
    • Evolutionary operation: a method for increasing industrial productivity
    • Box G.E.P. Evolutionary operation: a method for increasing industrial productivity. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1957, 6:81-101. 10.2307/2985505.
    • (1957) J. R. Stat. Soc. Ser. C (Appl. Stat.) , vol.6 , pp. 81-101
    • Box, G.E.P.1
  • 48
    • 0036664145 scopus 로고    scopus 로고
    • On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research
    • Sick B. On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mech. Syst. Signal Process. 2002, 16:487-546. 10.1006/mssp.2001.1460.
    • (2002) Mech. Syst. Signal Process. , vol.16 , pp. 487-546
    • Sick, B.1
  • 49
    • 28644444250 scopus 로고    scopus 로고
    • Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model
    • Sarkar S., Mitra S., Bhattacharyya B. Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model. Int. J. Adv. Manuf. Technol. 2006, 27:501-508. 10.1007/s00170-004-2203-7.
    • (2006) Int. J. Adv. Manuf. Technol. , vol.27 , pp. 501-508
    • Sarkar, S.1    Mitra, S.2    Bhattacharyya, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.