-
1
-
-
34247328174
-
A surface roughness prediction model for hard turning process
-
Singh D., Rao P.V. A surface roughness prediction model for hard turning process. Int. J. Adv. Manuf. Technol. 2007, 32:1115-1124. 10.1007/s00170-006-0429-2.
-
(2007)
Int. J. Adv. Manuf. Technol.
, vol.32
, pp. 1115-1124
-
-
Singh, D.1
Rao, P.V.2
-
2
-
-
33644749301
-
Approach to optimization of cutting conditions by using artificial neural networks
-
Cus F., Zuperl U. Approach to optimization of cutting conditions by using artificial neural networks. J. Mater. Process. Technol. 2006, 173:281-290. 10.1016/j.jmatprotec.2005.04.123.
-
(2006)
J. Mater. Process. Technol.
, vol.173
, pp. 281-290
-
-
Cus, F.1
Zuperl, U.2
-
3
-
-
84862283893
-
Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel
-
Çaydaş U., Ekici S. Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J. Intell. Manuf. 2012, 23:639-650. 10.1007/s10845-010-0415-2.
-
(2012)
J. Intell. Manuf.
, vol.23
, pp. 639-650
-
-
Çaydaş, U.1
Ekici, S.2
-
4
-
-
79751535484
-
Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm
-
Kilickap E., Huseyinoglu M., Yardimeden A. Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. Int. J. Adv. Manuf. Technol. 2011, 52:79-88. 10.1007/s00170-010-2710-7.
-
(2011)
Int. J. Adv. Manuf. Technol.
, vol.52
, pp. 79-88
-
-
Kilickap, E.1
Huseyinoglu, M.2
Yardimeden, A.3
-
5
-
-
77952091327
-
Artificial neural networks for surface roughness prediction when face milling Al 7075-T7351
-
Muñoz-Escalona P., Maropoulos P.G. Artificial neural networks for surface roughness prediction when face milling Al 7075-T7351. J. Mater. Eng. Perform. 2010, 19:185-193. 10.1007/s11665-009-9452-4.
-
(2010)
J. Mater. Eng. Perform.
, vol.19
, pp. 185-193
-
-
Muñoz-Escalona, P.1
Maropoulos, P.G.2
-
6
-
-
62949132164
-
Prediction and control of surface roughness in CNC lathe using artificial neural network
-
Karayel D. Prediction and control of surface roughness in CNC lathe using artificial neural network. J. Mater. Process. Technol. 2009, 209:3125-3137. 10.1016/j.jmatprotec.2008.07.023.
-
(2009)
J. Mater. Process. Technol.
, vol.209
, pp. 3125-3137
-
-
Karayel, D.1
-
7
-
-
43449102787
-
Influence of machining parameters on fatigue endurance limit of AISI 4140 steel
-
Lopes K.S.S., Sales W.F., Palma E.S. Influence of machining parameters on fatigue endurance limit of AISI 4140 steel. J. Braz. Soc. Mech. Sci. Eng. 2008, 30:77-83. 10.1590/S1678-58782008000100011.
-
(2008)
J. Braz. Soc. Mech. Sci. Eng.
, vol.30
, pp. 77-83
-
-
Lopes, K.S.S.1
Sales, W.F.2
Palma, E.S.3
-
8
-
-
33748276634
-
Multiple response optimization using Taguchi methodology and neuro-fuzzy based model
-
Antony J., Anand R.B., Kumar M., Tiwari M.K. Multiple response optimization using Taguchi methodology and neuro-fuzzy based model. J. Manuf. Technol. Manag. 2006, 17:908-925. 10.1108/17410380610688232.
-
(2006)
J. Manuf. Technol. Manag.
, vol.17
, pp. 908-925
-
-
Antony, J.1
Anand, R.B.2
Kumar, M.3
Tiwari, M.K.4
-
9
-
-
77955516396
-
Finding optimal model parameters by deterministic and annealed focused grid search
-
Jiménez Á.B., Lázaro J.L., Dorronsoro J.R. Finding optimal model parameters by deterministic and annealed focused grid search. Neurocomputing 2009, 72:2824-2832. 10.1016/j.neucom.2008.09.024.
-
(2009)
Neurocomputing
, vol.72
, pp. 2824-2832
-
-
Jiménez Á, B.1
Lázaro, J.L.2
Dorronsoro, J.R.3
-
10
-
-
58349093492
-
Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process
-
Correa M., Bielza C., Pamies-Teixeira J. Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 2009, 36:7270-7279. 10.1016/j.eswa.2008.09.024.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 7270-7279
-
-
Correa, M.1
Bielza, C.2
Pamies-Teixeira, J.3
-
11
-
-
42949106000
-
A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method
-
Çaydaş U., Hasçalik A. A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 2008, 202:574-582. 10.1016/j.jmatprotec.2007.10.024.
-
(2008)
J. Mater. Process. Technol.
, vol.202
, pp. 574-582
-
-
Çaydaş, U.1
Hasçalik, A.2
-
12
-
-
77956229257
-
Artificial neural networks for machining processes surface roughness modeling
-
Pontes F.J., Ferreira J.R., Silva M.B., Paiva A.P., Balestrassi P.P. Artificial neural networks for machining processes surface roughness modeling. Int. J. Adv. Manuf. Technol. 2010, 49:879-902. 10.1007/s00170-009-2456-2.
-
(2010)
Int. J. Adv. Manuf. Technol.
, vol.49
, pp. 879-902
-
-
Pontes, F.J.1
Ferreira, J.R.2
Silva, M.B.3
Paiva, A.P.4
Balestrassi, P.P.5
-
14
-
-
45749105080
-
Surface roughness prediction model for CNC machining of polypropylene
-
Dhokia V.G., Kumar S., Vichare P., Newman S.T., Allen R.D. Surface roughness prediction model for CNC machining of polypropylene. J. Eng. Manuf. 2008, 222:137-153. 10.1243/09544054jem884.
-
(2008)
J. Eng. Manuf.
, vol.222
, pp. 137-153
-
-
Dhokia, V.G.1
Kumar, S.2
Vichare, P.3
Newman, S.T.4
Allen, R.D.5
-
15
-
-
33746257756
-
Neural network and regression spline value function approximations for stochastic dynamic programming
-
Cervellera C., Wen A., Chen V.C.P. Neural network and regression spline value function approximations for stochastic dynamic programming. Comput. Oper. Res. 2007, 34:70-90. 10.1016/j.cor.2005.02.043.
-
(2007)
Comput. Oper. Res.
, vol.34
, pp. 70-90
-
-
Cervellera, C.1
Wen, A.2
Chen, V.C.P.3
-
16
-
-
50849135518
-
A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling
-
Karnik S.R., Gaitonde V.N., Davim J.P. A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling. Int. J. Adv. Manuf. Technol. 2008, 38:868-883. 10.1007/s00170-007-1140-7.
-
(2008)
Int. J. Adv. Manuf. Technol.
, vol.38
, pp. 868-883
-
-
Karnik, S.R.1
Gaitonde, V.N.2
Davim, J.P.3
-
17
-
-
33750317589
-
Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN
-
Bagci E., Işik B. Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN. Int. J. Adv. Manuf. Technol. 2006, 31:10-17. 10.1007/s00170-005-0175-x.
-
(2006)
Int. J. Adv. Manuf. Technol.
, vol.31
, pp. 10-17
-
-
Bagci, E.1
Işik, B.2
-
19
-
-
0038298770
-
Predicting surface roughness in machining: A review
-
Benardos P.G., Vosniakos G.C. Predicting surface roughness in machining: A review. Int. J. Mach. Tools Manuf. 2003, 43:833-844. 10.1016/S0890-6955(03)00059-2.
-
(2003)
Int. J. Mach. Tools Manuf.
, vol.43
, pp. 833-844
-
-
Benardos, P.G.1
Vosniakos, G.C.2
-
20
-
-
46249124721
-
Estimation of cutting forces and surface roughness for hard turning using neural networks
-
Sharma V.S., Dhiman S., Sehgal R., Sharma S.K. Estimation of cutting forces and surface roughness for hard turning using neural networks. J. Intell. Manuf. 2008, 19:473-483. 10.1007/s10845-008-0097-1.
-
(2008)
J. Intell. Manuf.
, vol.19
, pp. 473-483
-
-
Sharma, V.S.1
Dhiman, S.2
Sehgal, R.3
Sharma, S.K.4
-
21
-
-
33646773258
-
Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm
-
Oktem H., Erzurumlu T., Erzincanli F. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Mater. Des. 2006, 27:735-744. 10.1016/j.matdes.2005.01.010.
-
(2006)
Mater. Des.
, vol.27
, pp. 735-744
-
-
Oktem, H.1
Erzurumlu, T.2
Erzincanli, F.3
-
22
-
-
33746907798
-
Study on the prediction model of surface roughness for side milling operations
-
Chang C.-K., Lu H.S. Study on the prediction model of surface roughness for side milling operations. Int. J. Adv. Manuf. Technol. 2006, 29:867-878. 10.1007/s00170-005-2604-2.
-
(2006)
Int. J. Adv. Manuf. Technol.
, vol.29
, pp. 867-878
-
-
Chang, C.-K.1
Lu, H.S.2
-
23
-
-
27744485019
-
Surface roughness prediction in turning using artificial neural network
-
Pal S.K., Chakraborty D. Surface roughness prediction in turning using artificial neural network. Neural Comput. Appl. 2005, 14:319-324. 10.1007/s00521-005-0468-x.
-
(2005)
Neural Comput. Appl.
, vol.14
, pp. 319-324
-
-
Pal, S.K.1
Chakraborty, D.2
-
24
-
-
44749086674
-
Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models
-
Davim J.P., Gaitonde V.N., Karnik S.R. Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. J. Mater. Process. Technol. 2008, 205:16-23. 10.1016/j.jmatprotec.2007.11.082.
-
(2008)
J. Mater. Process. Technol.
, vol.205
, pp. 16-23
-
-
Davim, J.P.1
Gaitonde, V.N.2
Karnik, S.R.3
-
25
-
-
78650171110
-
Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm
-
Yang S.H., Natarajan U., Sekar M., Palani S. Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm. Int. J. Adv. Manuf. Technol. 2010, 51:965-971. 10.1007/s00170-010-2668-5.
-
(2010)
Int. J. Adv. Manuf. Technol.
, vol.51
, pp. 965-971
-
-
Yang, S.H.1
Natarajan, U.2
Sekar, M.3
Palani, S.4
-
26
-
-
71749087451
-
Prediction of surface roughness in the end milling machining using artificial neural network
-
Zain A.M., Haron H., Sharif S. Prediction of surface roughness in the end milling machining using artificial neural network. Expert Syst. Appl. 2010, 37:1755-1768. 10.1016/j.eswa.2009.07.033.
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 1755-1768
-
-
Zain, A.M.1
Haron, H.2
Sharif, S.3
-
27
-
-
33645556229
-
Prediction of surface roughness of turned surfaces using neural networks
-
Zhong Z.W., Khoo L.P., Han S.T. Prediction of surface roughness of turned surfaces using neural networks. Int. J. Adv. Manuf. Technol. 2006, 28:688-693. 10.1007/s00170-004-2429-4.
-
(2006)
Int. J. Adv. Manuf. Technol.
, vol.28
, pp. 688-693
-
-
Zhong, Z.W.1
Khoo, L.P.2
Han, S.T.3
-
28
-
-
12444249998
-
Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
-
Özel T., Karpat Y. Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int. J. Mach. Tools Manuf. 2005, 45:467-479. 10.1016/j.ijmachtools.2004.09.007.
-
(2005)
Int. J. Mach. Tools Manuf.
, vol.45
, pp. 467-479
-
-
Özel, T.1
Karpat, Y.2
-
29
-
-
0036815452
-
Prediction of surface roughness in CNC face milling using neural networks and Taguchi' s design of experiments
-
Benardos P.G., Vosniakos G.C. Prediction of surface roughness in CNC face milling using neural networks and Taguchi' s design of experiments. Robot. Comput. Integr. Manuf. 2002, 18:343-354. 10.1016/S0736-5845(02)00005-4.
-
(2002)
Robot. Comput. Integr. Manuf.
, vol.18
, pp. 343-354
-
-
Benardos, P.G.1
Vosniakos, G.C.2
-
30
-
-
38349091129
-
Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization
-
Karpat Y., Özel T. Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization. Int. J. Adv. Manuf. Technol. 2007, 35:234-247. 10.1007/s00170-006-0719-8.
-
(2007)
Int. J. Adv. Manuf. Technol.
, vol.35
, pp. 234-247
-
-
Karpat, Y.1
Özel, T.2
-
31
-
-
77949530093
-
Global Optimization Methods for Designing and Training Feedforward Artificial Neural Networks
-
Zanchettin C., Ludermir T.B. Global Optimization Methods for Designing and Training Feedforward Artificial Neural Networks. Adv. Neural Netw. 2007, 14:328-337.
-
(2007)
Adv. Neural Netw.
, vol.14
, pp. 328-337
-
-
Zanchettin, C.1
Ludermir, T.B.2
-
32
-
-
0027542979
-
Approach to planning for a designed industrial experiment
-
Coleman D.E., Montgomery D.C., Systematic A. Approach to planning for a designed industrial experiment. Technometrics 1993, 35:1-12. 10.2307/1269285.
-
(1993)
Technometrics
, vol.35
, pp. 1-12
-
-
Coleman, D.E.1
Montgomery, D.C.2
Systematic, A.3
-
33
-
-
28544452496
-
Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends
-
Kuo C.-F.J., Wu Y.-S. Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends. Int. J. Adv. Manuf. Technol. 2006, 27:455-461. 10.1007/s00170-004-2215-3.
-
(2006)
Int. J. Adv. Manuf. Technol.
, vol.27
, pp. 455-461
-
-
Kuo, C.-F.J.1
Wu, Y.-S.2
-
34
-
-
42649138966
-
Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel
-
Quiza R., Figueira L., Davim J.P. Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel. Int. J. Adv. Manuf. Technol. 2008, 37:641-648. 10.1007/s00170-007-0999-7.
-
(2008)
Int. J. Adv. Manuf. Technol.
, vol.37
, pp. 641-648
-
-
Quiza, R.1
Figueira, L.2
Davim, J.P.3
-
35
-
-
77955658249
-
The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process
-
Lasheras J.A.V., Vilán F.S., García Nieto J.J.C., Díaz P.J. The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process. Math. Comput. Model. 2010, 52:1169-1176. 10.1016/j.mcm.2010.03.007.
-
(2010)
Math. Comput. Model.
, vol.52
, pp. 1169-1176
-
-
Lasheras, J.A.V.1
Vilán, F.S.2
García Nieto, J.J.C.3
Díaz, P.J.4
-
37
-
-
70349467760
-
A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN
-
Chen W.-C., Hsu Y.-Y., Hsieh L.-F., Tai P.-H. A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN. Expert Syst. Appl. 2010, 37:716-726. 10.1016/j.eswa.2009.05.098.
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 716-726
-
-
Chen, W.-C.1
Hsu, Y.-Y.2
Hsieh, L.-F.3
Tai, P.-H.4
-
39
-
-
58149472216
-
Design of experiments on neural network's training for nonlinear time series forecasting
-
Balestrassi P.P., Popova E., Paiva A.P., Marangon Lima J.W. Design of experiments on neural network's training for nonlinear time series forecasting. Neurocomputing 2009, 72:1160-1178. 10.1016/j.neucom.2008.02.002.
-
(2009)
Neurocomputing
, vol.72
, pp. 1160-1178
-
-
Balestrassi, P.P.1
Popova, E.2
Paiva, A.P.3
Marangon Lima, J.W.4
-
40
-
-
50849140143
-
Simulating electricity spot prices in brazil using neural network and design of experiments
-
A.R. Queiroz, F.A. Oliveira, J.W.M. Lima, P.P. Balestrassi, Simulating electricity spot prices in brazil using neural network and design of experiments, In: Proceedings of the IEEE Lausanne PowerTech, 2007, pp. 2029-2034 . http://dx.doi.org/10.1109/PCT.2007.4538630.
-
(2007)
Proceedings of the IEEE Lausanne PowerTech
, pp. 2029-2034
-
-
Queiroz, A.R.1
Oliveira, F.A.2
Lima, J.W.M.3
Balestrassi, P.P.4
-
41
-
-
25144463079
-
State-of-the-art review: a user's guide to the brave new world of designing simulation experiments
-
Kleijnen J.P.C., Sanchez S.M., Lucas T.W., Cioppa T.M. State-of-the-art review: a user's guide to the brave new world of designing simulation experiments. Inf. J. Comput. 2005, 17:263-289. 10.1287/ijoc.1050.0136.
-
(2005)
Inf. J. Comput.
, vol.17
, pp. 263-289
-
-
Kleijnen, J.P.C.1
Sanchez, S.M.2
Lucas, T.W.3
Cioppa, T.M.4
-
42
-
-
0002525028
-
Evolutionary operation: a method for increasing industrial productivity
-
Box G.E.P. Evolutionary operation: a method for increasing industrial productivity. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1957, 6:81-101. 10.2307/2985505.
-
(1957)
J. R. Stat. Soc. Ser. C (Appl. Stat.)
, vol.6
, pp. 81-101
-
-
Box, G.E.P.1
-
48
-
-
0036664145
-
On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research
-
Sick B. On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mech. Syst. Signal Process. 2002, 16:487-546. 10.1006/mssp.2001.1460.
-
(2002)
Mech. Syst. Signal Process.
, vol.16
, pp. 487-546
-
-
Sick, B.1
-
49
-
-
28644444250
-
Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model
-
Sarkar S., Mitra S., Bhattacharyya B. Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model. Int. J. Adv. Manuf. Technol. 2006, 27:501-508. 10.1007/s00170-004-2203-7.
-
(2006)
Int. J. Adv. Manuf. Technol.
, vol.27
, pp. 501-508
-
-
Sarkar, S.1
Mitra, S.2
Bhattacharyya, B.3
|