-
1
-
-
84898063697
-
Competing in the dark: An efficient algorithm for bandit linear optimization
-
Abernethy, J., Hazan, E., and Rakhlin, A. Competing in the dark: An efficient algorithm for bandit linear optimization. In COLT, 2008.
-
(2008)
COLT
-
-
Abernethy, J.1
Hazan, E.2
Rakhlin, A.3
-
2
-
-
0036568025
-
Finite-time analysis of the multiarmed bandit problem
-
Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of the multiarmed bandit problem. Mach. Learn., 47(2-3):235-256, 2002.
-
(2002)
Mach. Learn.
, vol.47
, Issue.2-3
, pp. 235-256
-
-
Auer, P.1
Cesa-Bianchi, N.2
Fischer, P.3
-
3
-
-
85162033329
-
Batch bayesian optimization via simulation matching
-
Azimi, J., Fern, A., and X.Fern. Batch bayesian optimization via simulation matching. In NIPS, 2010.
-
(2010)
NIPS
-
-
Azimi, J.1
Fern, A.2
Fern, X.3
-
4
-
-
77958068642
-
-
In TR-2009-23, UBC
-
Brochu, E., Cora, M., and de Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. In TR-2009-23, UBC, 2009.
-
(2009)
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
-
-
Brochu, E.1
Cora, M.2
De Freitas, N.3
-
5
-
-
77956276996
-
Online optimization in X-armed bandits
-
Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. Online optimization in X-armed bandits. In NIPS, 2008.
-
(2008)
NIPS
-
-
Bubeck, S.1
Munos, R.2
Stoltz, G.3
Szepesvári, C.4
-
6
-
-
80052215814
-
Pure exploration in multi-armed bandits problems
-
Bubeck, S., Munos, R., and Stoltz, G. Pure exploration in multi-armed bandits problems. In ALT, 2009.
-
(2009)
ALT
-
-
Bubeck, S.1
Munos, R.2
Stoltz, G.3
-
9
-
-
84898072179
-
Stochastic linear optimization under bandit feedback
-
Dani, V., Hayes, T. P., and Kakade, S. M. Stochastic linear optimization under bandit feedback. In COLT, 2008.
-
(2008)
COLT
-
-
Dani, V.1
Hayes, T.P.2
Kakade, S.M.3
-
10
-
-
80053154335
-
Efficient optimal learning for contextual bandits
-
Dudik, M., Hsu, D., Kale, S., Karampatziakis, N., Langford, J., Reyzin, L., and Zhang, T. Efficient optimal learning for contextual bandits. In UAI, 2011.
-
(2011)
UAI
-
-
Dudik, M.1
Hsu, D.2
Kale, S.3
Karampatziakis, N.4
Langford, J.5
Reyzin, L.6
Zhang, T.7
-
11
-
-
79959416527
-
Kriging is well-suited to parallelize optimization
-
Tenne, Yoel and Goh, Chi-Keong (eds.), Computational Intelligence in Expensive Optimization Problems, Springer Berlin Heidelberg
-
Ginsbourger, D., Riche, R., and Carraro, L. Kriging is well-suited to parallelize optimization. In Tenne, Yoel and Goh, Chi-Keong (eds.), Computational Intelligence in Expensive Optimization Problems, volume 2 of Adaptation, Learning, and Optimization, pp. 131-162. Springer Berlin Heidelberg, 2010.
-
(2010)
Adaptation, Learning, and Optimization
, vol.2
, pp. 131-162
-
-
Ginsbourger, D.1
Riche, R.2
Carraro, L.3
-
12
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global optimization of expensive black-box functions. J Glob. Opti., 13:455-492, 1998.
-
(1998)
J Glob. Opti.
, vol.13
, pp. 455-492
-
-
Jones, D.R.1
Schonlau, M.2
Welch, W.J.3
-
13
-
-
57049185311
-
Multi-armed bandits in metric spaces
-
Kleinberg, R., Slivkins, A., and Upfal, E. Multi-armed bandits in metric spaces. In STOC, pp. 681-690, 2008.
-
(2008)
STOC
, pp. 681-690
-
-
Kleinberg, R.1
Slivkins, A.2
Upfal, E.3
-
14
-
-
34547975806
-
Bandit based monte-carlo planning
-
Kocsis, L. and Szepesvári, C. Bandit based monte-carlo planning. In ECML, 2006.
-
(2006)
ECML
-
-
Kocsis, L.1
Szepesvári, C.2
-
15
-
-
84880890296
-
Automatic gait optimization with Gaussian process regression
-
Lizotte, D., Wang, T., Bowling, M., and Schuurmans, D. Automatic gait optimization with Gaussian process regression. In IJCAI, pp. 944-949, 2007.
-
(2007)
IJCAI
, pp. 944-949
-
-
Lizotte, D.1
Wang, T.2
Bowling, M.3
Schuurmans, D.4
-
16
-
-
77951148076
-
Accelerated greedy algorithms for maximizing submodular set functions
-
Optimization Techniques
-
Minoux, M. Accelerated greedy algorithms for maximizing submodular set functions. Optimization Techniques, LNCS, pp. 234-243, 1978.
-
(1978)
LNCS
, pp. 234-243
-
-
Minoux, M.1
-
19
-
-
84966203785
-
Some aspects of the sequential design of experiments
-
Robbins, H. Some aspects of the sequential design of experiments. Bul. Am. Math. Soc., 55, 1952.
-
(1952)
Bul. Am. Math. Soc.
, vol.55
-
-
Robbins, H.1
-
20
-
-
77956501313
-
Gaussian process optimization in the bandit setting: No regret and experimental design
-
Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaussian process optimization in the bandit setting: No regret and experimental design. In ICML, 2010.
-
(2010)
ICML
-
-
Srinivas, N.1
Krause, A.2
Kakade, S.3
Seeger, M.4
-
21
-
-
78049457405
-
Inferring latent task structure for multitask learning by multiple kernel learning
-
Widmer, C., Toussaint, N., Altun, Y., and Rätsch, G. Inferring latent task structure for multitask learning by multiple kernel learning. BMG Bioinformatics, 11(Suppl 8:S5), 2010.
-
(2010)
BMG Bioinformatics
, vol.11
, Issue.SUPPL. 8
-
-
Widmer, C.1
Toussaint, N.2
Altun, Y.3
Rätsch, G.4
|