메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1191-1198

Parallelizing exploration-exploitation tradeoffs with Gaussian process bandit optimization

Author keywords

[No Author keywords available]

Indexed keywords

BATCH SIZES; CONSTANT FACTORS; GAUSSIAN PROCESS; GAUSSIAN PROCESSES; HIGH-THROUGHPUT; MULTI-ARMED BANDIT PROBLEM; PARALLELIZING; PAYOFF FUNCTION; REAL-WORLD APPLICATION; SEQUENTIAL APPROACH; SURROGATE FUNCTION;

EID: 84867115523     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (30)

References (21)
  • 1
    • 84898063697 scopus 로고    scopus 로고
    • Competing in the dark: An efficient algorithm for bandit linear optimization
    • Abernethy, J., Hazan, E., and Rakhlin, A. Competing in the dark: An efficient algorithm for bandit linear optimization. In COLT, 2008.
    • (2008) COLT
    • Abernethy, J.1    Hazan, E.2    Rakhlin, A.3
  • 2
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of the multiarmed bandit problem. Mach. Learn., 47(2-3):235-256, 2002.
    • (2002) Mach. Learn. , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 3
    • 85162033329 scopus 로고    scopus 로고
    • Batch bayesian optimization via simulation matching
    • Azimi, J., Fern, A., and X.Fern. Batch bayesian optimization via simulation matching. In NIPS, 2010.
    • (2010) NIPS
    • Azimi, J.1    Fern, A.2    Fern, X.3
  • 6
    • 80052215814 scopus 로고    scopus 로고
    • Pure exploration in multi-armed bandits problems
    • Bubeck, S., Munos, R., and Stoltz, G. Pure exploration in multi-armed bandits problems. In ALT, 2009.
    • (2009) ALT
    • Bubeck, S.1    Munos, R.2    Stoltz, G.3
  • 9
    • 84898072179 scopus 로고    scopus 로고
    • Stochastic linear optimization under bandit feedback
    • Dani, V., Hayes, T. P., and Kakade, S. M. Stochastic linear optimization under bandit feedback. In COLT, 2008.
    • (2008) COLT
    • Dani, V.1    Hayes, T.P.2    Kakade, S.M.3
  • 11
    • 79959416527 scopus 로고    scopus 로고
    • Kriging is well-suited to parallelize optimization
    • Tenne, Yoel and Goh, Chi-Keong (eds.), Computational Intelligence in Expensive Optimization Problems, Springer Berlin Heidelberg
    • Ginsbourger, D., Riche, R., and Carraro, L. Kriging is well-suited to parallelize optimization. In Tenne, Yoel and Goh, Chi-Keong (eds.), Computational Intelligence in Expensive Optimization Problems, volume 2 of Adaptation, Learning, and Optimization, pp. 131-162. Springer Berlin Heidelberg, 2010.
    • (2010) Adaptation, Learning, and Optimization , vol.2 , pp. 131-162
    • Ginsbourger, D.1    Riche, R.2    Carraro, L.3
  • 12
    • 0000561424 scopus 로고    scopus 로고
    • Efficient global optimization of expensive black-box functions
    • Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global optimization of expensive black-box functions. J Glob. Opti., 13:455-492, 1998.
    • (1998) J Glob. Opti. , vol.13 , pp. 455-492
    • Jones, D.R.1    Schonlau, M.2    Welch, W.J.3
  • 13
    • 57049185311 scopus 로고    scopus 로고
    • Multi-armed bandits in metric spaces
    • Kleinberg, R., Slivkins, A., and Upfal, E. Multi-armed bandits in metric spaces. In STOC, pp. 681-690, 2008.
    • (2008) STOC , pp. 681-690
    • Kleinberg, R.1    Slivkins, A.2    Upfal, E.3
  • 14
    • 34547975806 scopus 로고    scopus 로고
    • Bandit based monte-carlo planning
    • Kocsis, L. and Szepesvári, C. Bandit based monte-carlo planning. In ECML, 2006.
    • (2006) ECML
    • Kocsis, L.1    Szepesvári, C.2
  • 15
    • 84880890296 scopus 로고    scopus 로고
    • Automatic gait optimization with Gaussian process regression
    • Lizotte, D., Wang, T., Bowling, M., and Schuurmans, D. Automatic gait optimization with Gaussian process regression. In IJCAI, pp. 944-949, 2007.
    • (2007) IJCAI , pp. 944-949
    • Lizotte, D.1    Wang, T.2    Bowling, M.3    Schuurmans, D.4
  • 16
    • 77951148076 scopus 로고
    • Accelerated greedy algorithms for maximizing submodular set functions
    • Optimization Techniques
    • Minoux, M. Accelerated greedy algorithms for maximizing submodular set functions. Optimization Techniques, LNCS, pp. 234-243, 1978.
    • (1978) LNCS , pp. 234-243
    • Minoux, M.1
  • 19
    • 84966203785 scopus 로고
    • Some aspects of the sequential design of experiments
    • Robbins, H. Some aspects of the sequential design of experiments. Bul. Am. Math. Soc., 55, 1952.
    • (1952) Bul. Am. Math. Soc. , vol.55
    • Robbins, H.1
  • 20
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaussian process optimization in the bandit setting: No regret and experimental design. In ICML, 2010.
    • (2010) ICML
    • Srinivas, N.1    Krause, A.2    Kakade, S.3    Seeger, M.4
  • 21
    • 78049457405 scopus 로고    scopus 로고
    • Inferring latent task structure for multitask learning by multiple kernel learning
    • Widmer, C., Toussaint, N., Altun, Y., and Rätsch, G. Inferring latent task structure for multitask learning by multiple kernel learning. BMG Bioinformatics, 11(Suppl 8:S5), 2010.
    • (2010) BMG Bioinformatics , vol.11 , Issue.SUPPL. 8
    • Widmer, C.1    Toussaint, N.2    Altun, Y.3    Rätsch, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.