-
1
-
-
41149141516
-
Histone deacetylases: target enzymes for cancer therapy
-
COI: 1:CAS:528:DC%2BD1cXmtFyhur8%3D, PID: 18058245
-
Mottet D, Castronovo V. Histone deacetylases: target enzymes for cancer therapy. Clin Exp Metastasis 2008; 25: 183–189. DOI: 10.1007/s10585-007-9131-5
-
(2008)
Clin Exp Metastasis
, vol.25
, pp. 183-189
-
-
Mottet, D.1
Castronovo, V.2
-
2
-
-
84869874482
-
Trials with ‘epigenetic’ drugs: an update
-
COI: 1:CAS:528:DC%2BC38Xhs12gt7zN, PID: 23103179
-
Nebbioso A, Carafa V, Benedetti R, Altucci L. Trials with ‘epigenetic’ drugs: an update. Mol Oncol 2012; 6: 657–682. DOI: 10.1016/j.molonc.2012.09.004
-
(2012)
Mol Oncol
, vol.6
, pp. 657-682
-
-
Nebbioso, A.1
Carafa, V.2
Benedetti, R.3
Altucci, L.4
-
3
-
-
84874094984
-
Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials
-
COI: 1:CAS:528:DC%2BC3sXis1Ciur0%3D, PID: 23414475
-
Qiu T, Zhou L, Zhu W, Wang T, Wang J, Shu Y et al. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol 2013; 9: 255–269. DOI: 10.2217/fon.12.173
-
(2013)
Future Oncol
, vol.9
, pp. 255-269
-
-
Qiu, T.1
Zhou, L.2
Zhu, W.3
Wang, T.4
Wang, J.5
Shu, Y.6
-
4
-
-
84863367140
-
HDAC inhibitors for the treatment of cutaneous T-cell lymphomas
-
COI: 1:CAS:528:DC%2BC38XktVajs7k%3D, PID: 22416775
-
Rangwala S, Zhang C, Duvic M. HDAC inhibitors for the treatment of cutaneous T-cell lymphomas. Future Med Chem 2012; 4: 471–486. DOI: 10.4155/fmc.12.6
-
(2012)
Future Med Chem
, vol.4
, pp. 471-486
-
-
Rangwala, S.1
Zhang, C.2
Duvic, M.3
-
5
-
-
84993683912
-
Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: a perspective review
-
COI: 1:CAS:528:DC%2BC28XhsVaitLjE, PID: 26288714
-
Sawas A, Radeski D, O’Connor OA. Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: a perspective review. Ther Adv Hematol 2015; 6: 202–208. DOI: 10.1177/2040620715592567
-
(2015)
Ther Adv Hematol
, vol.6
, pp. 202-208
-
-
Sawas, A.1
Radeski, D.2
O’Connor, O.A.3
-
6
-
-
84899719994
-
Belinostat for the treatment of peripheral T-cell lymphomas
-
COI: 1:STN:280:DC%2BC2cfhsF2gsQ%3D%3D
-
McDermott J, Jimeno A. Belinostat for the treatment of peripheral T-cell lymphomas. Drugs Today (Barc) 2014; 50: 337–345. DOI: 10.1358/dot.2014.50.4.2133570
-
(2014)
Drugs Today (Barc)
, vol.50
, pp. 337-345
-
-
McDermott, J.1
Jimeno, A.2
-
7
-
-
84942605310
-
Panobinostat, a pan-histone deacetylase inhibitor: rationale for and application to treatment of multiple myeloma
-
COI: 1:STN:280:DC%2BC283js1WlsA%3D%3D
-
Cheng T, Grasse L, Shah J, Chandra J. Panobinostat, a pan-histone deacetylase inhibitor: rationale for and application to treatment of multiple myeloma. Drugs Today (Barc) 2015; 51: 491–504. DOI: 10.1358/dot.2015.51.8.2362311
-
(2015)
Drugs Today (Barc)
, vol.51
, pp. 491-504
-
-
Cheng, T.1
Grasse, L.2
Shah, J.3
Chandra, J.4
-
8
-
-
79952158522
-
Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer
-
COI: 1:CAS:528:DC%2BC3MXisVWlurs%3D, PID: 21345145
-
Thurn KT, Thomas S, Moore A, Munster PN. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol 2011; 7: 263–283. DOI: 10.2217/fon.11.2
-
(2011)
Future Oncol
, vol.7
, pp. 263-283
-
-
Thurn, K.T.1
Thomas, S.2
Moore, A.3
Munster, P.N.4
-
9
-
-
84862125485
-
HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells
-
COI: 1:CAS:528:DC%2BC38XosVagsLY%3D, PID: 22301920
-
Peixoto P, Castronovo V, Matheus N, Polese C, Peulen O, Gonzalez a et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell Death Differ 2012; 19: 1239–1252. DOI: 10.1038/cdd.2012.3
-
(2012)
Cell Death Differ
, vol.19
, pp. 1239-1252
-
-
Peixoto, P.1
Castronovo, V.2
Matheus, N.3
Polese, C.4
Peulen, O.5
Gonzalez, A.6
-
10
-
-
84927800194
-
Down-regulation of HDAC5 inhibits growth of human hepatocellular carcinoma by induction of apoptosis and cell cycle arrest
-
COI: 1:CAS:528:DC%2BC2cXhtl2nsr7J, PID: 25129440
-
Fan J, Lou B, Chen W, Zhang J, Lin S, Lv F et al. Down-regulation of HDAC5 inhibits growth of human hepatocellular carcinoma by induction of apoptosis and cell cycle arrest. Tumour Biol 2014; 35: 11523–11532. DOI: 10.1007/s13277-014-2358-2
-
(2014)
Tumour Biol
, vol.35
, pp. 11523-11532
-
-
Fan, J.1
Lou, B.2
Chen, W.3
Zhang, J.4
Lin, S.5
Lv, F.6
-
11
-
-
84931292063
-
HDAC5 promotes colorectal cancer cell proliferation by up-regulating DLL4 expression
-
COI: 1:CAS:528:DC%2BC2MXhvFWntr7O, PID: 26131280
-
He P, Liang J, Shao T, Guo Y, Hou Y, Li Y. HDAC5 promotes colorectal cancer cell proliferation by up-regulating DLL4 expression. Int J Clin Exp Med 2015; 8: 6510–6516.
-
(2015)
Int J Clin Exp Med
, vol.8
, pp. 6510-6516
-
-
He, P.1
Liang, J.2
Shao, T.3
Guo, Y.4
Hou, Y.5
Li, Y.6
-
12
-
-
84929411962
-
Histone deacetylase 5 promotes the proliferation of glioma cells by upregulation of Notch 1
-
COI: 1:CAS:528:DC%2BC2cXhslOhurzK, PID: 25050565
-
Liu Q, Zheng J-M, Chen J-K, Yan X-L, Chen H-M, Nong W-X et al. Histone deacetylase 5 promotes the proliferation of glioma cells by upregulation of Notch 1. Mol Med Rep 2014; 10: 2045–2050. DOI: 10.3892/mmr.2014.2395
-
(2014)
Mol Med Rep
, vol.10
, pp. 2045-2050
-
-
Liu, Q.1
Zheng, J.-M.2
Chen, J.-K.3
Yan, X.-L.4
Chen, H.-M.5
Nong, W.-X.6
-
13
-
-
84953373727
-
Both HDAC5 and HDAC6 are required for the proliferation and metastasis of melanoma cells
-
PID: 26747087
-
Liu J, Gu J, Feng Z, Yang Y, Zhu N, Lu W et al. Both HDAC5 and HDAC6 are required for the proliferation and metastasis of melanoma cells. J Transl Med 2016; 14: 7. DOI: 10.1186/s12967-015-0753-0
-
(2016)
J Transl Med
, vol.14
, pp. 7
-
-
Liu, J.1
Gu, J.2
Feng, Z.3
Yang, Y.4
Zhu, N.5
Lu, W.6
-
14
-
-
84944393503
-
Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response
-
COI: 1:CAS:528:DC%2BC2MXhs1CqtL7F, PID: 26454086
-
Zhang L, Wang K, Lei Y, Li Q, Nice EC, Huang C. Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic Biol Med 2015; 89: 452–465. DOI: 10.1016/j.freeradbiomed.2015.08.030
-
(2015)
Free Radic Biol Med
, vol.89
, pp. 452-465
-
-
Zhang, L.1
Wang, K.2
Lei, Y.3
Li, Q.4
Nice, E.C.5
Huang, C.6
-
15
-
-
67049145833
-
HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells
-
COI: 1:CAS:528:DC%2BD1MXntVeqsr4%3D, PID: 19351956
-
Urbich C, Rössig L, Kaluza D, Potente M, Boeckel J-N, Knau A et al. HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells. Blood 2009; 113: 5669–5679. DOI: 10.1182/blood-2009-01-196485
-
(2009)
Blood
, vol.113
, pp. 5669-5679
-
-
Urbich, C.1
Rössig, L.2
Kaluza, D.3
Potente, M.4
Boeckel, J.-N.5
Knau, A.6
-
16
-
-
84937514988
-
Mitochondrial quality control pathways as determinants of metabolic health
-
COI: 1:CAS:528:DC%2BC2MXht1GktbjF, PID: 26010263
-
Held NM, Houtkooper RH. Mitochondrial quality control pathways as determinants of metabolic health. BioEssays 2015; 37: 867–876. DOI: 10.1002/bies.201500013
-
(2015)
BioEssays
, vol.37
, pp. 867-876
-
-
Held, N.M.1
Houtkooper, R.H.2
-
17
-
-
0031933285
-
in vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity
-
COI: 1:CAS:528:DyaK1cXhtVGhsLw%3D, PID: 9461098
-
Baliga R, Zhang Z, Baliga M, Ueda N, Shah SV. in vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int 1998; 53: 394–401. DOI: 10.1046/j.1523-1755.1998.00767.x
-
(1998)
Kidney Int
, vol.53
, pp. 394-401
-
-
Baliga, R.1
Zhang, Z.2
Baliga, M.3
Ueda, N.4
Shah, S.V.5
-
18
-
-
85011999786
-
Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species
-
COI: 1:CAS:528:DC%2BC2sXhslSqsro%3D, PID: 28139118
-
Ma P, Xiao H, Yu C, Liu J, Cheng Z, Song H et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett 2017; 17: 928–937. DOI: 10.1021/acs.nanolett.6b04269
-
(2017)
Nano Lett
, vol.17
, pp. 928-937
-
-
Ma, P.1
Xiao, H.2
Yu, C.3
Liu, J.4
Cheng, Z.5
Song, H.6
-
19
-
-
84946919734
-
Cancer: the enemy of my enemy is my friend
-
COI: 1:CAS:528:DC%2BC2MXhslOrtLjO, PID: 26503052
-
Harris IS, Brugge JS. Cancer: the enemy of my enemy is my friend. Nature 2015; 527: 170–171. DOI: 10.1038/nature15644
-
(2015)
Nature
, vol.527
, pp. 170-171
-
-
Harris, I.S.1
Brugge, J.S.2
-
20
-
-
80051783174
-
Uncoupling proteins and the control of mitochondrial reactive oxygen species production
-
COI: 1:CAS:528:DC%2BC3MXhtVagtrnM, PID: 21762777
-
Mailloux RJ, Harper M-E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 2011; 51: 1106–1115. DOI: 10.1016/j.freeradbiomed.2011.06.022
-
(2011)
Free Radic Biol Med
, vol.51
, pp. 1106-1115
-
-
Mailloux, R.J.1
Harper, M.-E.2
-
21
-
-
84865976786
-
Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review
-
PID: 21904528
-
Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2011; 2: 49. DOI: 10.3389/fphar.2011.00049
-
(2011)
Front Pharmacol
, vol.2
, pp. 49
-
-
Porporato, P.E.1
Dhup, S.2
Dadhich, R.K.3
Copetti, T.4
Sonveaux, P.5
-
22
-
-
84875890762
-
Targeting cellular metabolism to improve cancer therapeutics
-
COI: 1:CAS:528:DC%2BC3sXhtVyku7%2FJ, PID: 23470539
-
Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 2013; 4: e532. DOI: 10.1038/cddis.2013.60
-
(2013)
Cell Death Dis
, vol.4
-
-
Zhao, Y.1
Butler, E.B.2
Tan, M.3
-
23
-
-
84856244072
-
Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast
-
COI: 1:CAS:528:DC%2BC38XhtlWjt7s%3D, PID: 22157017
-
Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T et al. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem 2012; 287: 3265–3272. DOI: 10.1074/jbc.M111.280156
-
(2012)
J Biol Chem
, vol.287
, pp. 3265-3272
-
-
Kurihara, Y.1
Kanki, T.2
Aoki, Y.3
Hirota, Y.4
Saigusa, T.5
Uchiumi, T.6
-
24
-
-
84867239599
-
Curbing autophagy and histone deacetylases to kill cancer cells
-
COI: 1:CAS:528:DC%2BC3sXisVGgsb8%3D, PID: 22894919
-
Gammoh N, Marks PA, Jiang X. Curbing autophagy and histone deacetylases to kill cancer cells. Autophagy 2012; 8: 1521–1522. DOI: 10.4161/auto.21151
-
(2012)
Autophagy
, vol.8
, pp. 1521-1522
-
-
Gammoh, N.1
Marks, P.A.2
Jiang, X.3
-
25
-
-
80052697287
-
The role of autophagy in cancer: therapeutic implications
-
COI: 1:CAS:528:DC%2BC3MXhtFCjurjM, PID: 3170456
-
Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 2011; 10: 1533–1541. DOI: 10.1158/1535-7163.MCT-11-0047
-
(2011)
Mol Cancer Ther
, vol.10
, pp. 1533-1541
-
-
Yang, Z.J.1
Chee, C.E.2
Huang, S.3
Sinicrope, F.A.4
-
26
-
-
84959568718
-
Response of esophageal cancer cells to epigenetic inhibitors is mediated via altered thioredoxin activity
-
COI: 1:CAS:528:DC%2BC28Xhtlajuw%3D%3D, PID: 26692290
-
Ahrens TD, Timme S, Ostendorp J, Bogatyreva L, Hoeppner J, Hopt UT et al. Response of esophageal cancer cells to epigenetic inhibitors is mediated via altered thioredoxin activity. Lab Invest 2016; 96: 307–316. DOI: 10.1038/labinvest.2015.148
-
(2016)
Lab Invest
, vol.96
, pp. 307-316
-
-
Ahrens, T.D.1
Timme, S.2
Ostendorp, J.3
Bogatyreva, L.4
Hoeppner, J.5
Hopt, U.T.6
-
27
-
-
77953812609
-
Mitochondrial respiratory chain super-complex I-III in physiology and pathology
-
COI: 1:CAS:528:DC%2BC3cXnvV2qs78%3D, PID: 20116362
-
Lenaz G, Baracca A, Barbero G, Bergamini C, Dalmonte ME, Del Sole M et al. Mitochondrial respiratory chain super-complex I-III in physiology and pathology. Biochim Biophys Acta 2010; 1797: 633–640. DOI: 10.1016/j.bbabio.2010.01.025
-
(2010)
Biochim Biophys Acta
, vol.1797
, pp. 633-640
-
-
Lenaz, G.1
Baracca, A.2
Barbero, G.3
Bergamini, C.4
Dalmonte, M.E.5
Del Sole, M.6
-
28
-
-
84885083036
-
Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin
-
COI: 1:CAS:528:DC%2BC3sXhslyitLjI, PID: 23969999
-
Chekhun VF, Lukyanova NY, Burlaka АP, Bezdenezhnykh NA, Shpyleva SI, Tryndyak VP et al. Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int J Oncol 2013; 43: 1481–1486. DOI: 10.3892/ijo.2013.2063
-
(2013)
Int J Oncol
, vol.43
, pp. 1481-1486
-
-
Chekhun, V.F.1
Lukyanova, N.Y.2
Burlaka, А.P.3
Bezdenezhnykh, N.A.4
Shpyleva, S.I.5
Tryndyak, V.P.6
-
29
-
-
84941954897
-
Cytoprotective effects of ferritin on doxorubicin-induced breast cancer cell death
-
COI: 1:CAS:528:DC%2BC2sXpvF2itw%3D%3D, PID: 26352101
-
Buranrat B, Connor JR. Cytoprotective effects of ferritin on doxorubicin-induced breast cancer cell death. Oncol Rep 2015; 34: 2790–2796. DOI: 10.3892/or.2015.4250
-
(2015)
Oncol Rep
, vol.34
, pp. 2790-2796
-
-
Buranrat, B.1
Connor, J.R.2
-
30
-
-
78649673239
-
Role of ferritin alterations in human breast cancer cells
-
COI: 1:CAS:528:DC%2BC3MXpvFWgsw%3D%3D, PID: 20390345
-
Shpyleva SI, Tryndyak VP, Kovalchuk O, Starlard-Davenport A, Chekhun VF, Beland FA et al. Role of ferritin alterations in human breast cancer cells. Breast Cancer Res Treat 2011; 126: 63–71. DOI: 10.1007/s10549-010-0849-4
-
(2011)
Breast Cancer Res Treat
, vol.126
, pp. 63-71
-
-
Shpyleva, S.I.1
Tryndyak, V.P.2
Kovalchuk, O.3
Starlard-Davenport, A.4
Chekhun, V.F.5
Beland, F.A.6
-
31
-
-
84899800704
-
Metallothionein 1G and zinc sensitize human colorectal cancer cells to chemotherapy
-
COI: 1:CAS:528:DC%2BC2cXnsFWjur8%3D, PID: 24634414
-
Arriaga JM, Greco A, Mordoh J, Bianchini M. Metallothionein 1G and zinc sensitize human colorectal cancer cells to chemotherapy. Mol Cancer Ther 2014; 13: 1369–1381. DOI: 10.1158/1535-7163.MCT-13-0944
-
(2014)
Mol Cancer Ther
, vol.13
, pp. 1369-1381
-
-
Arriaga, J.M.1
Greco, A.2
Mordoh, J.3
Bianchini, M.4
-
32
-
-
84862532394
-
Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function
-
COI: 1:CAS:528:DC%2BC3MXhsFCls7vO, PID: 21932419
-
Margalit O, Simon AJ, Yakubov E, Puca R, Yosepovich A, Avivi C et al. Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function. Int J Cancer 2012; 131: E562–E568. DOI: 10.1002/ijc.26441
-
(2012)
Int J Cancer
, vol.131
, pp. E562-E568
-
-
Margalit, O.1
Simon, A.J.2
Yakubov, E.3
Puca, R.4
Yosepovich, A.5
Avivi, C.6
-
33
-
-
84938232611
-
An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
-
COI: 1:CAS:528:DC%2BC2MXht12jsrrL, PID: 26232224
-
Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 2015; 162: 540–551. DOI: 10.1016/j.cell.2015.07.016
-
(2015)
Cell
, vol.162
, pp. 540-551
-
-
Birsoy, K.1
Wang, T.2
Chen, W.W.3
Freinkman, E.4
Abu-Remaileh, M.5
Sabatini, D.M.6
-
34
-
-
84992170624
-
Differential aspartate usage identifies a subset of cancer cells particularly dependent on OGDH
-
COI: 1:CAS:528:DC%2BC28XhslSht7zJ, PID: 27732861
-
Allen EL, Ulanet DB, Pirman D, Mahoney CE, Coco J, Si Y et al. Differential aspartate usage identifies a subset of cancer cells particularly dependent on OGDH. Cell Rep 2016; 17: 876–890. DOI: 10.1016/j.celrep.2016.09.052
-
(2016)
Cell Rep
, vol.17
, pp. 876-890
-
-
Allen, E.L.1
Ulanet, D.B.2
Pirman, D.3
Mahoney, C.E.4
Coco, J.5
Si, Y.6
-
35
-
-
84965010266
-
Aspartate rescues S-phase arrest caused by suppression of lutamine utilization in KRas-driven cancer cells
-
COI: 1:CAS:528:DC%2BC28Xms1Whtrw%3D, PID: 26921316
-
Patel D, Menon D, Bernfeld E, Mroz V, Kalan S, Loayza D et al. Aspartate rescues S-phase arrest caused by suppression of lutamine utilization in KRas-driven cancer cells. J Biol Chem 2016; 291: 9322–9329. DOI: 10.1074/jbc.M115.710145
-
(2016)
J Biol Chem
, vol.291
, pp. 9322-9329
-
-
Patel, D.1
Menon, D.2
Bernfeld, E.3
Mroz, V.4
Kalan, S.5
Loayza, D.6
-
36
-
-
84928404797
-
Glutamate and asparagine cataplerosis underlie glutamine addiction in melanoma
-
PID: 25749035
-
Ratnikov B, Aza-Blanc P, Ronai ZA, Smith JW, Osterman AL, Scott DA. Glutamate and asparagine cataplerosis underlie glutamine addiction in melanoma. Oncotarget 2015; 6: 7379–7389. DOI: 10.18632/oncotarget.3132
-
(2015)
Oncotarget
, vol.6
, pp. 7379-7389
-
-
Ratnikov, B.1
Aza-Blanc, P.2
Ronai, Z.A.3
Smith, J.W.4
Osterman, A.L.5
Scott, D.A.6
-
37
-
-
84890159876
-
Cancer cell metabolism: implications for therapeutic targets
-
PID: 3809361
-
Jang M, Kim SS, Lee J. Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 2013; 45: e45. DOI: 10.1038/emm.2013.85
-
(2013)
Exp Mol Med
, vol.45
-
-
Jang, M.1
Kim, S.S.2
Lee, J.3
-
38
-
-
85069238576
-
Defects in mitochondrial metabolism and cancer
-
PID: 25057353
-
Gaude E, Frezza C. Defects in mitochondrial metabolism and cancer. Cancer Metab 2014; 2: 10. DOI: 10.1186/2049-3002-2-10
-
(2014)
Cancer Metab
, vol.2
, pp. 10
-
-
Gaude, E.1
Frezza, C.2
-
39
-
-
4544358659
-
Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development
-
COI: 1:CAS:528:DC%2BD2cXnvVakt7g%3D, PID: 15367668
-
Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 2004; 24: 8467–8476. DOI: 10.1128/MCB.24.19.8467-8476.2004
-
(2004)
Mol Cell Biol
, vol.24
, pp. 8467-8476
-
-
Chang, S.1
McKinsey, T.A.2
Zhang, C.L.3
Richardson, J.A.4
Hill, J.A.5
Olson, E.N.6
-
40
-
-
84901852459
-
Redox regulation of cardiac hypertrophy
-
COI: 1:CAS:528:DC%2BC2cXksVWmsLg%3D, PID: 24530760
-
Sag CM, Santos CXC, Shah AM. Redox regulation of cardiac hypertrophy. J Mol Cell Cardiol 2014; 73: 103–111. DOI: 10.1016/j.yjmcc.2014.02.002
-
(2014)
J Mol Cell Cardiol
, vol.73
, pp. 103-111
-
-
Sag, C.M.1
Santos, C.X.C.2
Shah, A.M.3
-
41
-
-
84872465435
-
Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease
-
COI: 1:CAS:528:DC%2BC38XhslGrurnI, PID: 22914591
-
Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A. Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease. J Alzheimers Dis 2013; 33: 35–44. DOI: 10.3233/JAD-2012-121009
-
(2013)
J Alzheimers Dis
, vol.33
, pp. 35-44
-
-
Agis-Balboa, R.C.1
Pavelka, Z.2
Kerimoglu, C.3
Fischer, A.4
-
42
-
-
34548356689
-
Causes of oxidative stress in Alzheimer disease
-
COI: 1:CAS:528:DC%2BD2sXhtFygtrzF, PID: 17605000
-
Zhu X, Su B, Wang X, Smith MA, Perry G. Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci 2007; 64: 2202–2210. DOI: 10.1007/s00018-007-7218-4
-
(2007)
Cell Mol Life Sci
, vol.64
, pp. 2202-2210
-
-
Zhu, X.1
Su, B.2
Wang, X.3
Smith, M.A.4
Perry, G.5
-
43
-
-
84901305946
-
The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease
-
PID: 24860495
-
McCord MC, Aizenman E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front Aging Neurosci 2014; 6: 77. DOI: 10.3389/fnagi.2014.00077
-
(2014)
Front Aging Neurosci
, vol.6
, pp. 77
-
-
McCord, M.C.1
Aizenman, E.2
-
44
-
-
67649739079
-
Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis
-
PID: 19387120
-
Altamura S, Muckenthaler MU. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis 2009; 16: 879–895. DOI: 10.3233/JAD-2009-1010
-
(2009)
J Alzheimers Dis
, vol.16
, pp. 879-895
-
-
Altamura, S.1
Muckenthaler, M.U.2
-
45
-
-
84920840714
-
Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants
-
COI: 1:CAS:528:DC%2BC2MXlsFChuw%3D%3D, PID: 25243342
-
Di Domenico F, Barone E, Perluigi M, Butterfield DA. Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev Neurother 2015; 15: 19–40. DOI: 10.1586/14737175.2015.955853
-
(2015)
Expert Rev Neurother
, vol.15
, pp. 19-40
-
-
Di Domenico, F.1
Barone, E.2
Perluigi, M.3
Butterfield, D.A.4
-
46
-
-
79961033321
-
The link between iron, metabolic syndrome, and Alzheimer’s disease
-
PID: 20556444
-
Grünblatt E, Bartl J, Riederer P. The link between iron, metabolic syndrome, and Alzheimer’s disease. J Neural Transm 2011; 118: 371–379. DOI: 10.1007/s00702-010-0426-3
-
(2011)
J Neural Transm
, vol.118
, pp. 371-379
-
-
Grünblatt, E.1
Bartl, J.2
Riederer, P.3
-
47
-
-
37349089053
-
Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis
-
COI: 1:CAS:528:DC%2BD2sXhtlOjsL3N
-
Mottet D, Bellahcène A, Pirotte S, Waltregny D, Deroanne C, Lamour V et al. Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res 2007; 101: 1237–1246. DOI: 10.1161/CIRCRESAHA.107.149377
-
(2007)
Circ Res
, vol.101
, pp. 1237-1246
-
-
Mottet, D.1
Bellahcène, A.2
Pirotte, S.3
Waltregny, D.4
Deroanne, C.5
Lamour, V.6
-
48
-
-
58249096131
-
HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism
-
COI: 1:CAS:528:DC%2BD1MXlsFKrtg%3D%3D, PID: 18850004
-
Mottet D, Pirotte S, Lamour V, Hagedorn M, Javerzat S, Bikfalvi A et al. HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene 2009; 28: 243–256. DOI: 10.1038/onc.2008.371
-
(2009)
Oncogene
, vol.28
, pp. 243-256
-
-
Mottet, D.1
Pirotte, S.2
Lamour, V.3
Hagedorn, M.4
Javerzat, S.5
Bikfalvi, A.6
-
49
-
-
20444459433
-
Resveratrol and curcumin reduce the respiratory burst of Chlamydia-primed THP-1 cells
-
COI: 1:CAS:528:DC%2BD2MXlt1SksLk%3D, PID: 15939398
-
Deby-Dupont G, Mouithys-Mickalad A, Serteyn D, Lamy M, Deby C. Resveratrol and curcumin reduce the respiratory burst of Chlamydia-primed THP-1 cells. Biochem Biophys Res Commun 2005; 333: 21–27. DOI: 10.1016/j.bbrc.2005.05.073
-
(2005)
Biochem Biophys Res Commun
, vol.333
, pp. 21-27
-
-
Deby-Dupont, G.1
Mouithys-Mickalad, A.2
Serteyn, D.3
Lamy, M.4
Deby, C.5
-
50
-
-
84882926598
-
Effect of myeloperoxidase and anoxia/reoxygenation on mitochondrial respiratory function of cultured primary equine skeletal myoblasts
-
COI: 1:CAS:528:DC%2BC3sXos1Witw%3D%3D, PID: 23268199
-
Ceusters JD, Mouithys-Mickalad AA, Franck TJ, Derochette S, Vanderplasschen A, Deby-Dupont GP et al. Effect of myeloperoxidase and anoxia/reoxygenation on mitochondrial respiratory function of cultured primary equine skeletal myoblasts. Mitochondrion 2013; 13: 410–416. DOI: 10.1016/j.mito.2012.12.004
-
(2013)
Mitochondrion
, vol.13
, pp. 410-416
-
-
Ceusters, J.D.1
Mouithys-Mickalad, A.A.2
Franck, T.J.3
Derochette, S.4
Vanderplasschen, A.5
Deby-Dupont, G.P.6
-
51
-
-
78149430939
-
Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells
-
PID: 21049048
-
Gangolf M, Czerniecki J, Radermecker M, Detry O, Nisolle M, Jouan C et al. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One 2010; 5: e13616. DOI: 10.1371/journal.pone.0013616
-
(2010)
PLoS One
, vol.5
-
-
Gangolf, M.1
Czerniecki, J.2
Radermecker, M.3
Detry, O.4
Nisolle, M.5
Jouan, C.6
-
52
-
-
84905731719
-
Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal
-
COI: 1:CAS:528:DC%2BC2cXhtFChs77N, PID: 25017943
-
Sounni NE, Cimino J, Blacher S, Primac I, Truong A, Mazzucchelli G et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab 2014; 20: 280–294. DOI: 10.1016/j.cmet.2014.05.022
-
(2014)
Cell Metab
, vol.20
, pp. 280-294
-
-
Sounni, N.E.1
Cimino, J.2
Blacher, S.3
Primac, I.4
Truong, A.5
Mazzucchelli, G.6
|