메뉴 건너뛰기




Volumn 405, Issue , 2017, Pages 81-90

Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network

Author keywords

Arrhythmia; Atrial fibrillation; Atrial flutter; Convolution neural network; Deep learning; Electrocardiogram signals; Ventricular fibrillation

Indexed keywords

CARDIOVASCULAR SYSTEM; COMPUTER AIDED DIAGNOSIS; CONVOLUTION; DEEP LEARNING; DISEASES; FLUTTER (AERODYNAMICS); NEURAL NETWORKS;

EID: 85017454416     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2017.04.012     Document Type: Article
Times cited : (622)

References (36)
  • 2
    • 84885763551 scopus 로고    scopus 로고
    • Advances in Cardiac Signal Processing
    • Springer-Verlag Berlin Heidelberg New York
    • [2] Acharya, U.R., Suri, J.S., Spaan, J.A.E., Krishnan, S.M., Advances in Cardiac Signal Processing. 2007, Springer-Verlag Berlin Heidelberg, New York.
    • (2007)
    • Acharya, U.R.1    Suri, J.S.2    Spaan, J.A.E.3    Krishnan, S.M.4
  • 3
    • 85017427142 scopus 로고    scopus 로고
    • This is the economic impact of an aging Singaporean workforce
    • (Last accessed: 24 February 2017)
    • [3] Bawany, S., This is the economic impact of an aging Singaporean workforce. Singapore Bus. Rev., 2013 (Last accessed: 24 February 2017).
    • (2013) Singapore Bus. Rev.
    • Bawany, S.1
  • 4
    • 1342330872 scopus 로고    scopus 로고
    • Bradycardia and tachycardia occurring in older people: an introduction
    • [4] Berry, C., Rankin, A.C., Brady, A.J.B., Bradycardia and tachycardia occurring in older people: an introduction. Brit. J. Cardiol., 11(1), 2004.
    • (2004) Brit. J. Cardiol. , vol.11 , Issue.1
    • Berry, C.1    Rankin, A.C.2    Brady, A.J.B.3
  • 5
    • 85017425480 scopus 로고    scopus 로고
    • Notes on convolutional neural network.
    • [5] J. Bouvrie. Notes on convolutional neural network, 2007.
    • (2007)
    • Bouvrie, J.1
  • 6
    • 84867922568 scopus 로고    scopus 로고
    • Epidemiology of arrhythmias and conduction disorders in older adults
    • [6] Chow, G.V., Marine, J.E., Fleg, J.L., Epidemiology of arrhythmias and conduction disorders in older adults. Clinics Geriatric Med. 28:4 (2012), 539–553.
    • (2012) Clinics Geriatric Med. , vol.28 , Issue.4 , pp. 539-553
    • Chow, G.V.1    Marine, J.E.2    Fleg, J.L.3
  • 8
    • 84991396801 scopus 로고    scopus 로고
    • Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers
    • [8] Desai, U., Martis, R.J., Acharya, U.R., Nayak, C.G., Seshikala, G., Ranjan, S.K., Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. J. Mech. Med. Biol., 16(1), 2016.
    • (2016) J. Mech. Med. Biol. , vol.16 , Issue.1
    • Desai, U.1    Martis, R.J.2    Acharya, U.R.3    Nayak, C.G.4    Seshikala, G.5    Ranjan, S.K.6
  • 9
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • second ed. John Wiley and Sons New York
    • [9] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification. second ed., 2001, John Wiley and Sons, New York.
    • (2001)
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 10
    • 78651294041 scopus 로고    scopus 로고
    • Diagnosis of cardiovascular abnormalities from compressed ECG: a datamining-based approach
    • [10] Fahim, S., Khalil, I., Diagnosis of cardiovascular abnormalities from compressed ECG: a datamining-based approach. IEEE Trans. Inf. Technol. Biomed. 15 (2011), 33–39.
    • (2011) IEEE Trans. Inf. Technol. Biomed. , vol.15 , pp. 33-39
    • Fahim, S.1    Khalil, I.2
  • 11
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • [11] Fukushima, K., Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36 (1980), 193–202.
    • (1980) Biol. Cybern. , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 12
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • [12] Glorot, X., Bengio, Y., Understanding the difficulty of training deep feedforward neural networks. Aistats, 2010.
    • (2010) Aistats
    • Glorot, X.1    Bengio, Y.2
  • 13
    • 0004107673 scopus 로고    scopus 로고
    • Clinical Electrocardiography: A Simplified Approach
    • Mosby, St. Louis MO, USA
    • [13] Goldberger, A.L., Clinical Electrocardiography: A Simplified Approach. 2012, Mosby, St. Louis, MO, USA.
    • (2012)
    • Goldberger, A.L.1
  • 15
    • 84944735469 scopus 로고    scopus 로고
    • Deep Learning
    • MIT Press
    • [15] Goodfellow, I., Bengio, Y., Courville, A., Deep Learning. 2016, MIT Press http://www.deeplearningbook.org.
    • (2016)
    • Goodfellow, I.1    Bengio, Y.2    Courville, A.3
  • 17
    • 84968665432 scopus 로고    scopus 로고
    • Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images
    • [17] van Grinsven, M.J.J.P., van Ginneken, B., Hoyng, C.B., Theelen, T., Sánchez, C.I., Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans. Med. Imaging 35:5 (2016), 1273–1284.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1273-1284
    • van Grinsven, M.J.J.P.1    van Ginneken, B.2    Hoyng, C.B.3    Theelen, T.4    Sánchez, C.I.5
  • 18
    • 85014027955 scopus 로고    scopus 로고
    • Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships
    • [18] Hatipoglu, N., Bilgin, G., Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships. Med. Biol. Eng. Comput., 2017, 1–20.
    • (2017) Med. Biol. Eng. Comput. , pp. 1-20
    • Hatipoglu, N.1    Bilgin, G.2
  • 19
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: surpassing human-level performance on image net classification
    • [19] K. He, X. Zhang, S. Ren, J. Sun. Delving deep into rectifiers: surpassing human-level performance on image net classification, 1026–1034, 2015.
    • (2015) , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 20
    • 85017428590 scopus 로고    scopus 로고
    • About Keras models. (Last accessed: 09 March ).
    • [20] Keras Documentation. About Keras models. https://keras.io/models/about-keras-models/. (Last accessed: 09 March 2017).
    • (2017)
  • 21
    • 84962128752 scopus 로고    scopus 로고
    • Real-time patient-specific ECG classification by 1-D convolutional neural network
    • [21] Kiranyaz, S., Ince, T., Gabbouj, M., Real-time patient-specific ECG classification by 1-D convolutional neural network. IEEE Trans. Biomed. Eng. 63:3 (2016), 664–675.
    • (2016) IEEE Trans. Biomed. Eng. , vol.63 , Issue.3 , pp. 664-675
    • Kiranyaz, S.1    Ince, T.2    Gabbouj, M.3
  • 22
  • 23
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • [23] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P, Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 24
    • 0002263996 scopus 로고    scopus 로고
    • Convolutional networks for images, speech, and time-series
    • MIT Press Cambridge MA, USA
    • [24] LeCun, Y., Bengio, Y., Convolutional networks for images, speech, and time-series. The Handbook of Brain Theory and Neural Networks, 1998, MIT Press Cambridge, MA, USA.
    • (1998) The Handbook of Brain Theory and Neural Networks
    • LeCun, Y.1    Bengio, Y.2
  • 25
    • 84896967586 scopus 로고    scopus 로고
    • Current methods in electrocardiogram characterization
    • [25] Martis, R.J., Acharya, U.R., Adeli, H., Current methods in electrocardiogram characterization. Comput. Biol. Med. 48 (2014), 133–149.
    • (2014) Comput. Biol. Med. , vol.48 , pp. 133-149
    • Martis, R.J.1    Acharya, U.R.2    Adeli, H.3
  • 28
    • 85017445341 scopus 로고    scopus 로고
    • Global health and aging. Assess. Costs Aging Health Care. (Last accessed: 24 February ).
    • [28] National Institute on Aging – turning discovery into health. Global health and aging. Assess. Costs Aging Health Care. https://www.nia.nih.gov/research/publication/global-health-and-aging/assessing-costs-aging-and-health-care. (Last accessed: 24 February 2017).
    • (2017)
  • 29
    • 85057507032 scopus 로고    scopus 로고
    • Biomedical Signal and Image Processing
    • second ed. CRC Press, Taylor and Francis Group Boca Raton
    • [29] Najarian, K., Splinter, R., Biomedical Signal and Image Processing. second ed., 2012, CRC Press, Taylor and Francis Group, Boca Raton.
    • (2012)
    • Najarian, K.1    Splinter, R.2
  • 31
    • 33646153511 scopus 로고    scopus 로고
    • Optimal selection of wavelet basis function applied to ECG signal denoising
    • [31] Singh, B.N., Tiwari, A., Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Process. 16:3 (2006), 275–287.
    • (2006) Digital Signal Process. , vol.16 , Issue.3 , pp. 275-287
    • Singh, B.N.1    Tiwari, A.2
  • 32
    • 84968542311 scopus 로고    scopus 로고
    • Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
    • [32] Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R.J., Cree, I.A., Rajpoot, N.M., Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35:5 (2016), 1196–1206.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1196-1206
    • Sirinukunwattana, K.1    Raza, S.E.A.2    Tsang, Y.W.3    Snead, D.R.J.4    Cree, I.A.5    Rajpoot, N.M.6
  • 33
    • 85017429431 scopus 로고    scopus 로고
    • Department of economic and social affairs population division. World population aging. New York, 2015.
    • [33] United Nations. Department of economic and social affairs population division. World population aging 2015. New York, 2015.
    • (2015)
  • 34
    • 0034889261 scopus 로고    scopus 로고
    • A short-time multifractal approach for arrhythmia detection based on fuzzy neural network
    • [34] Wang, Y., Zhu, Y.S., Thakor, N.V., Xu., Y.H., A short-time multifractal approach for arrhythmia detection based on fuzzy neural network. IEEE Trans. Biomed. Eng. 48:9 (2001), 989–995.
    • (2001) IEEE Trans. Biomed. Eng. , vol.48 , Issue.9 , pp. 989-995
    • Wang, Y.1    Zhu, Y.S.2    Thakor, N.V.3    Xu., Y.H.4
  • 35
    • 84968680221 scopus 로고    scopus 로고
    • Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition
    • [35] Yan, Z., Zhan, Y., Peng, Z., Liao, S., Shinagawa, Y., Zhang, S., Metaxas, D.N., Zhou, X.S., Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imag. 35:5 (2016), 1332–1343.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1332-1343
    • Yan, Z.1    Zhan, Y.2    Peng, Z.3    Liao, S.4    Shinagawa, Y.5    Zhang, S.6    Metaxas, D.N.7    Zhou, X.S.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.