메뉴 건너뛰기




Volumn , Issue , 2016, Pages

An automated ECG beat classification system using convolutional neural networks

Author keywords

Convolutional neural networks (CNNs); ECG beat classification; Wearable device

Indexed keywords

AUDIO SYSTEMS; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL EFFICIENCY; COMPUTER AIDED DIAGNOSIS; CONVOLUTION; DIAGNOSIS; ELECTROCARDIOGRAPHY; FEATURE EXTRACTION; NEURAL NETWORKS; PATTERN RECOGNITION; PATTERN RECOGNITION SYSTEMS;

EID: 85006276781     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICITCS.2016.7740310     Document Type: Conference Paper
Times cited : (212)

References (27)
  • 1
    • 0035031393 scopus 로고    scopus 로고
    • Geometrical aspects of the interindividual variability of multilead ECG recordings
    • May
    • R. Hoekema et al., "Geometrical aspects of the interindividual variability of multilead ECG recordings," IEEE Trans. Biomed. Eng., vol. 48, no. 5, pp. 551-559, May 2001.
    • (2001) IEEE Trans. Biomed. Eng , vol.48 , Issue.5 , pp. 551-559
    • Hoekema, R.1
  • 2
    • 0032940127 scopus 로고    scopus 로고
    • ECG beat detection using filter banks
    • Feb. 1999J
    • X. Afonso and T. Q. Nguyen, "ECG beat detection using filter banks", IEEE trans. Biomed. Eng., vol. 46, no. 2, pp. 192-202, Feb. 1999J.
    • IEEE Trans. Biomed. Eng , vol.46 , Issue.2 , pp. 192-202
    • Afonso, X.1    Nguyen, T.Q.2
  • 3
    • 0025483033 scopus 로고
    • An approach to cardia arrhythmia analysis using hidden morkow models
    • Sep
    • D. A Coast et al., " An approach to cardia arrhythmia analysis using hidden Morkow models," IEEE Trans. Biomed. Eng., vol. 37, no.9, pp. 826-836, Sep. 1990.
    • (1990) IEEE Trans. Biomed. Eng , vol.37 , Issue.9 , pp. 826-836
    • Coast, D.A.1
  • 4
    • 1642265037 scopus 로고    scopus 로고
    • Support vector machine based expert system for reliable heartbeat recognition
    • Apr
    • I S. Osowski et al., "Support vector machine based expert system for reliable heartbeat recognition," IEEE Trans.Biomed. Eng., vol. 51, no. 4, pp. 582-589, Apr. 2004.
    • (2004) IEEE Trans.Biomed. Eng , vol.51 , Issue.4 , pp. 582-589
    • Osowski, I.S.1
  • 5
    • 0028205396 scopus 로고
    • Applications of artificial neural networks for ECG signal detection and classification
    • Y. H. Hu et al., "Applications of artificial neural networks for ECG signal detection and classification," J. Electrocardiol., vol. 26, pp. 66-73, 1994.
    • (1994) J. Electrocardiol , vol.26 , pp. 66-73
    • Hu, Y.H.1
  • 6
    • 84864238440 scopus 로고    scopus 로고
    • A automatic patient-Adapted ECG heartbeat classifier allowing expert assistance
    • Llamedo et al., "A automatic patient-Adapted ECG heartbeat classifier allowing expert assistance", IEEE Transiction on Biomed. Eng., vol. 59, no. 8, pp. 2312-2320, 2012.
    • (2012) IEEE Transiction on Biomed. Eng , vol.59 , Issue.8 , pp. 2312-2320
    • Llamedo1
  • 7
    • 58349091028 scopus 로고    scopus 로고
    • A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network
    • R. Ceylan, Y. Ozbay, and B. Karlik, "A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network," Expert Syst. with Applicat., vol. 36, no. 3, pp. 6721-6726, 2009.
    • (2009) Expert Syst. with Applicat , vol.36 , Issue.3 , pp. 6721-6726
    • Ceylan, R.1    Ozbay, Y.2    Karlik, B.3
  • 8
    • 84874313733 scopus 로고    scopus 로고
    • Classification of cardiac arrhythmia using wt, hrv, and fuzzy c-means clustering
    • A. Dallali, A. Kachouri, and M. Samet, "Classification of Cardiac Arrhythmia Using WT, HRV, and Fuzzy C-Means Clustering," Signal Processing: An Int. J. (SPJI), vol. 5, no. 3, pp. 101-109, 2011.
    • (2011) Signal Processing: An Int. J. (SPJI , vol.5 , Issue.3 , pp. 101-109
    • Dallali, A.1    Kachouri, A.2    Samet, M.3
  • 9
    • 2942707563 scopus 로고    scopus 로고
    • Classification of cardiac abnormalities using heart rate signals
    • R. Acharya et al., "Classification of cardiac abnormalities using heart rate signals," Medical and Biological Eng. and Computing, vol. 42, no. 3, pp. 288-293, 2004.
    • (2004) Medical and Biological Eng. and Computing , vol.42 , Issue.3 , pp. 288-293
    • Acharya, R.1
  • 12
    • 84947926223 scopus 로고    scopus 로고
    • Automatic classification of ECG signal for heart disease diagnosis using morphological features," int
    • M. Vijayavanan, V. Rathikarani, and P. Dhanalakshmi, "Automatic Classification of ECG Signal for Heart Disease Diagnosis using morphological features," Int. J. of Comput. Sci. and Eng. Technology (IJCSET), vol. 5, no. 4, pp. 449-455, 2014.
    • (2014) J. of Comput. Sci. and Eng. Technology (IJCSET , vol.5 , Issue.4 , pp. 449-455
    • Vijayavanan, M.1    Rathikarani, V.2    Dhanalakshmi, P.3
  • 14
    • 67649208265 scopus 로고    scopus 로고
    • A generic and robust system for automated patient-specific classification of ECG signals
    • Ince ae al., "A generic and robust system for automated patient-specific classification of ECG signals", IEEE Trans. On Biomed. Eng., vol. 56, no. 5, pp. 1415-1426, 2009.
    • (2009) IEEE Trans. on Biomed. Eng , vol.56 , Issue.5 , pp. 1415-1426
    • Incea1
  • 15
    • 84962758200 scopus 로고    scopus 로고
    • ECG image classification in real time based on the harr-like feature and artificial neural networks
    • B. Mohamed et al., "ECG image classification in real time based on the harr-like feature and artificial neural networks", In procedia Computer Science vol. 73, pp. 32-39, 2015.
    • (2015) Procedia Computer Science , vol.73 , pp. 32-39
    • Mohamed, B.1
  • 17
    • 84929954951 scopus 로고    scopus 로고
    • Subset based deep learning for rgbd object recognition
    • J. Bai , Y. Wu , J. Zhang , F. Chen , "Subset based deep learning for RGBD object recognition," Neurocomputing vol.165, pp.280-292, 2015.
    • (2015) Neurocomputing , vol.165 , pp. 280-292
    • Bai, J.1    Wu, Y.2    Zhang, J.3    Chen, F.4
  • 18
    • 84931578416 scopus 로고    scopus 로고
    • Face recognition on large-scale video in the wild with hybrid euclidean-And-riemannian metric learning
    • Z. Huang , R. Wang , S. Shan , X. Chen , "Face recognition on large-scale video in the wild with hybrid Euclidean-And-Riemannian metric learning," Pattern Recognit. Vol. 48, pp. 3113-3124, 2015.
    • (2015) Pattern Recognit , vol.48 , pp. 3113-3124
    • Huang, Z.1    Wang, R.2    Shan, S.3    Chen, X.4
  • 19
    • 84920106320 scopus 로고    scopus 로고
    • Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2d and 3d images
    • T. Brosch , R. Tam , Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images, Neural Comput. Vol.27, pp. 211-227, 2015
    • (2015) Neural Comput , vol.27 , pp. 211-227
    • Brosch, T.1    Tam, R.2
  • 20
    • 84901439759 scopus 로고    scopus 로고
    • Autoencoder-based unsupervised domain adaptation for speech emotion recognition
    • J. Deng , Z. Zhang , F. Eyben , B. Schuller, "Autoencoder-based unsupervised domain adaptation for speech emotion recognition, IEEE Signal Process. Lett." Vol. 21,pp. 1068-1072, 2014.
    • (2014) IEEE Signal Process. Lett , vol.21 , pp. 1068-1072
    • Deng, J.1    Zhang, Z.2    Eyben, F.3    Schuller, B.4
  • 21
    • 84959421866 scopus 로고    scopus 로고
    • Deep learning approach for active classification of electrocardiogram signals
    • AL Rahhal, M. M., et al. "Deep learning approach for active classification of electrocardiogram signals", Information science vol. 345, pp. 340-354, 2016.
    • (2016) Information Science , vol.345 , pp. 340-354
    • Rahhal M M, A.L.1
  • 22
    • 84962128752 scopus 로고    scopus 로고
    • Real time patient-specific ECG classification by 1-d convolutional neural networks
    • S. Kiranzyaz et al., " Real time patient-specific ECG classification by 1-D convolutional neural networks", IEEE Trans. On Biomed. Eng., vol. 63, no. 3, 2016.
    • (2016) IEEE Trans. on Biomed. Eng , vol.63 , Issue.3
    • Kiranzyaz, S.1
  • 23
    • 82955193252 scopus 로고    scopus 로고
    • An eficeint r-peak detection based on new nonlinear transformation and first-order Gaussian differentiator
    • P. Kathirvel et al., " An eficeint R-peak Detection Based on new nonlinear transformation and first-order Gaussian differentiator", Cardiovascular Engineering and Technology, vol. 2, no. 4, pp. 408-425, 2011.
    • (2011) Cardiovascular Engineering and Technology , vol.2 , Issue.4 , pp. 408-425
    • Kathirvel, P.1
  • 24
    • 84942615806 scopus 로고    scopus 로고
    • Dwt-based feature extraction from, ECG signal
    • V. Srivastava and D. Prasad, "Dwt-Based Feature Extraction from, ecg Signal," American J. of Eng. Research (AJER), vol. 2, no. 3, pp. 44-50, 2013.
    • (2013) American J. of Eng. Research (AJER , vol.2 , Issue.3 , pp. 44-50
    • Srivastava, V.1    Prasad, D.2
  • 25
    • 84896833049 scopus 로고    scopus 로고
    • Classification of electrocardiogram signals with rs and quantum neural networks
    • X. Tang and L. Shu, "Classification of Electrocardiogram Signals with RS and Quantum Neural Networks," Int. J. of Multimedia and Ubiquitous Eng., vol. 9, no. 2, pp. 363-372,2014.
    • (2014) Int J. of Multimedia and Ubiquitous Eng , vol.9 , Issue.2 , pp. 363-372
    • Tang, X.1    Shu, L.2
  • 26
    • 84947931588 scopus 로고    scopus 로고
    • Support vector machine based heartbeat classification
    • N. P. Joshi and P. S. Topannavar, "Support vector machine based heartbeat classification," Proc. of 4th IRF Int. Conf., pp. 140-144, 2014.
    • (2014) Proc. of 4th IRF Int. Conf , pp. 140-144
    • Joshi, N.P.1    Topannavar, P.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.