메뉴 건너뛰기




Volumn 18, Issue 2, 2015, Pages 150-162

Vehicle speed prediction via a sliding-window time series analysis and an evolutionary least learning machine: A case study on San Francisco urban roads

Author keywords

Intelligent tools; Predictive control; Sliding window time series forecasting; Speed prediction; Vehicle powertrains

Indexed keywords


EID: 85017347981     PISSN: None     EISSN: 22150986     Source Type: Journal    
DOI: 10.1016/j.jestch.2014.11.002     Document Type: Article
Times cited : (66)

References (30)
  • 2
    • 85072486281 scopus 로고    scopus 로고
    • Route-based control of hybrid electric vehicles
    • [2] Gonder, J.D., Route-based control of hybrid electric vehicles. SAE World Congress, U. S. A., 2008.
    • (2008) SAE World Congress, U. S. A.
    • Gonder, J.D.1
  • 3
    • 84903457188 scopus 로고    scopus 로고
    • Intelligent power management of plug-in hybrid electric vehicles, part II: real-time route based power management
    • [3] Vajedi, M., Chehresaz, M., Azad, N.L., Intelligent power management of plug-in hybrid electric vehicles, part II: real-time route based power management. Int. J. Electr. Hybrid Veh. 6:1 (2014), 68–86.
    • (2014) Int. J. Electr. Hybrid Veh. , vol.6 , Issue.1 , pp. 68-86
    • Vajedi, M.1    Chehresaz, M.2    Azad, N.L.3
  • 4
    • 12244292245 scopus 로고    scopus 로고
    • Short-term traffic flow prediction using neuro-genetic algorithms
    • [4] Abdulhai, B., Porwal, H., Recker, W., Short-term traffic flow prediction using neuro-genetic algorithms. Intell. Transp. Syst. J. 7:1 (2002), 3–41.
    • (2002) Intell. Transp. Syst. J. , vol.7 , Issue.1 , pp. 3-41
    • Abdulhai, B.1    Porwal, H.2    Recker, W.3
  • 5
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • [5] Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C., Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C Emerg. Technol. 13:3 (2005), 211–234.
    • (2005) Transp. Res. Part C Emerg. Technol. , vol.13 , Issue.3 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 6
    • 26444571471 scopus 로고    scopus 로고
    • Dynamic wavelet neural network model for traffic flow forecasting
    • [6] Jiang, X., Adelim, H., Dynamic wavelet neural network model for traffic flow forecasting. J. Transp. Eng. 131:10 (2005), 771–779.
    • (2005) J. Transp. Eng. , vol.131 , Issue.10 , pp. 771-779
    • Jiang, X.1    Adelim, H.2
  • 7
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural approach
    • [7] Zheng, W., Lee, D.H., Shi, Q., Short-term freeway traffic flow prediction: Bayesian combined neural approach. J. Transp. Eng. 132:2 (2006), 114–121.
    • (2006) J. Transp. Eng. , vol.132 , Issue.2 , pp. 114-121
    • Zheng, W.1    Lee, D.H.2    Shi, Q.3
  • 9
    • 84861893114 scopus 로고    scopus 로고
    • Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm
    • [9] Chan, K.Y., Dillion, T.S., Tharam, S., Singh, J., Chang, E., Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm. IEEE Trans. Intell. Transp. Syst. 13:2 (2012), 644–654.
    • (2012) IEEE Trans. Intell. Transp. Syst. , vol.13 , Issue.2 , pp. 644-654
    • Chan, K.Y.1    Dillion, T.S.2    Tharam, S.3    Singh, J.4    Chang, E.5
  • 10
    • 84988389948 scopus 로고    scopus 로고
    • Vehicle's velocity time series prediction using neural network
    • [10] Fotouhi, A., Montazeri-Gh, M., Jannatipour, M., Vehicle's velocity time series prediction using neural network. Int. J. Automot. Eng. 1:1 (2011), 21–28.
    • (2011) Int. J. Automot. Eng. , vol.1 , Issue.1 , pp. 21-28
    • Fotouhi, A.1    Montazeri-Gh, M.2    Jannatipour, M.3
  • 11
    • 84901592884 scopus 로고    scopus 로고
    • Least learning machine and its experimental studies on regression capability
    • [11] Wang, S., Chung, F.L., Wu, J., Wang, J., Least learning machine and its experimental studies on regression capability. Appl. Soft Comput. 21 (2014), 677–684.
    • (2014) Appl. Soft Comput. , vol.21 , pp. 677-684
    • Wang, S.1    Chung, F.L.2    Wu, J.3    Wang, J.4
  • 12
    • 84860821981 scopus 로고    scopus 로고
    • Charge car Community Conversions: Practical, Electric Commuter Vehicles Now!
    • Technical Report Carnegie Mellon University
    • [12] Brown, H.B., Nourbakhsh, I., Bartley, C., Cross, J., Dille, P., Charge car Community Conversions: Practical, Electric Commuter Vehicles Now!. Technical Report, 2012, Carnegie Mellon University.
    • (2012)
    • Brown, H.B.1    Nourbakhsh, I.2    Bartley, C.3    Cross, J.4    Dille, P.5
  • 13
    • 85017372181 scopus 로고    scopus 로고
    • (), ‘’
    • [13] ChargeCar Project Website, (2012), ‘http://www.chargecar.org/’.
    • (2012)
  • 15
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • [15] Huang, G.B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: theory and applications. Neurocomputing 70 (2006), 489–501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 16
    • 84894092305 scopus 로고    scopus 로고
    • Optimally pruned extreme learning machine with ensemble of regularization techniques and negative correlation penalty applied to automotive engine coldstart hydrocarbon emission identification
    • [16] Mozaffari, A., Azad, N.L., Optimally pruned extreme learning machine with ensemble of regularization techniques and negative correlation penalty applied to automotive engine coldstart hydrocarbon emission identification. Neurocomputing 131 (2014), 143–156.
    • (2014) Neurocomputing , vol.131 , pp. 143-156
    • Mozaffari, A.1    Azad, N.L.2
  • 17
    • 84862219884 scopus 로고    scopus 로고
    • Optimal design of constraint engineering systems: application of mutable smart bee algorithm
    • [17] Mozaffari, A., Gorji-Bandpy, M., Gorji, T.B., Optimal design of constraint engineering systems: application of mutable smart bee algorithm. Int. J. Bio-Inspired Comput. 4:3 (2012), 167–180.
    • (2012) Int. J. Bio-Inspired Comput. , vol.4 , Issue.3 , pp. 167-180
    • Mozaffari, A.1    Gorji-Bandpy, M.2    Gorji, T.B.3
  • 18
    • 84894211569 scopus 로고    scopus 로고
    • Swarm intelligence in bio-informatics: methods and implementations for discovering patterns of multiple sequences
    • [18] Cui, Z., Zhang, Y., Swarm intelligence in bio-informatics: methods and implementations for discovering patterns of multiple sequences. J. Nanosci. Nanotechnol. 14:2 (2014), 1746–1757.
    • (2014) J. Nanosci. Nanotechnol. , vol.14 , Issue.2 , pp. 1746-1757
    • Cui, Z.1    Zhang, Y.2
  • 19
    • 84887074792 scopus 로고    scopus 로고
    • Optimal design of classic Atkinson engine with dynamic specific heat using adaptive neuro-fuzzy inference system and mutable smart bee algorithm
    • [19] Mozaffari, A., Ramiar, A., Fathi, A., Optimal design of classic Atkinson engine with dynamic specific heat using adaptive neuro-fuzzy inference system and mutable smart bee algorithm. Swarm Evol. Comput. 12 (2013), 74–91.
    • (2013) Swarm Evol. Comput. , vol.12 , pp. 74-91
    • Mozaffari, A.1    Ramiar, A.2    Fathi, A.3
  • 21
    • 0003866267 scopus 로고    scopus 로고
    • Multi-objective Optimization Using Evolutionary Algorithms
    • Wiley Chichester, London
    • [21] Deb, K., Multi-objective Optimization Using Evolutionary Algorithms. 2001, Wiley, Chichester, London.
    • (2001)
    • Deb, K.1
  • 22
    • 77955995704 scopus 로고    scopus 로고
    • Artificial bee colony
    • Article ID: 6915
    • [22] Karaboga, D., Artificial bee colony. Scholarpedia, 5(3), 2010 Article ID: 6915.
    • (2010) Scholarpedia , vol.5 , Issue.3
    • Karaboga, D.1
  • 25
    • 85017391065 scopus 로고    scopus 로고
    • Using artificial neural network to estimate average speed of vehicles in rural roads
    • [25] Mahmoudabadi, A., Using artificial neural network to estimate average speed of vehicles in rural roads. Int. Conf. Intell. Network Comput., 2010, 25–30.
    • (2010) Int. Conf. Intell. Network Comput. , pp. 25-30
    • Mahmoudabadi, A.1
  • 27
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • [27] Gooijer, J.G.D., Hyndman, R.J., 25 years of time series forecasting. Int. J. Forecast. 22 (2006), 443–473.
    • (2006) Int. J. Forecast. , vol.22 , pp. 443-473
    • Gooijer, J.G.D.1    Hyndman, R.J.2
  • 28
    • 0036071568 scopus 로고    scopus 로고
    • A state space framework for automatic forecasting using exponential smoothing methods
    • [28] Hyndman, R.J., Koehler, A.B., Snuder, R.D., Grose, S., A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 18 (2002), 439–454.
    • (2002) Int. J. Forecast. , vol.18 , pp. 439-454
    • Hyndman, R.J.1    Koehler, A.B.2    Snuder, R.D.3    Grose, S.4
  • 29
    • 13244283161 scopus 로고    scopus 로고
    • Prediction intervals for exponential smoothing state space models
    • [29] Hyndman, J., Koehler, A.B., Ord, J.K., Snyder, R.D., Prediction intervals for exponential smoothing state space models. J. Forecast. 24 (2005), 17–37.
    • (2005) J. Forecast. , vol.24 , pp. 17-37
    • Hyndman, J.1    Koehler, A.B.2    Ord, J.K.3    Snyder, R.D.4
  • 30
    • 0003410292 scopus 로고    scopus 로고
    • Time Series Analysis: Forecasting and Control
    • John Wiley and Sons
    • [30] George, E.P., Jenkis, G.M., Reinsel, G.C., Time Series Analysis: Forecasting and Control. 2008, John Wiley and Sons.
    • (2008)
    • George, E.P.1    Jenkis, G.M.2    Reinsel, G.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.