메뉴 건너뛰기




Volumn , Issue , 2011, Pages 376-381

Traffic flow forecasting neural networks based on exponential smoothing method

Author keywords

exponential smoothing; neural network; traffic flow forecasting

Indexed keywords

EXPONENTIAL SMOOTHING; EXPONENTIAL SMOOTHING METHOD; GENERALIZATION CAPABILITY; NETWORK DEVELOPMENT; NEURAL NETWORK MODEL; NEURAL NETWORK TRAINING; NON-SMOOTH; REAL-TIME TRAFFIC CONDITIONS; TESTING ERRORS; TRAFFIC FLOW; TRAFFIC FLOW FORECASTING; TRAINING ERRORS; TRAINING PURPOSE; WESTERN AUSTRALIA;

EID: 80052219807     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICIEA.2011.5975612     Document Type: Conference Paper
Times cited : (25)

References (18)
  • 2
    • 35348858027 scopus 로고    scopus 로고
    • Forecasting Thailand's rice export: Statistical techniques vs. artificial neural networks
    • Henry, C.C., Rujirek, B.: Forecasting Thailand's rice export: statistical techniques vs. artificial neural networks. Computers and Industrial Engineering, 53, 610-627 (2007)
    • (2007) Computers and Industrial Engineering , vol.53 , pp. 610-627
    • Henry, C.C.1    Rujirek, B.2
  • 8
    • 0031092111 scopus 로고    scopus 로고
    • Should we use neural networks or statistical models for short-term motorway traffic forecasting
    • Kirby, H.R., Watson, S.M., Dougherty, M.S.: Should we use neural networks or statistical models for short-term motorway traffic forecasting. International Journal of Forecasting, 13, 43-50 (1997)
    • (1997) International Journal of Forecasting , vol.13 , pp. 43-50
    • Kirby, H.R.1    Watson, S.M.2    Dougherty, M.S.3
  • 9
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • Prechelt L., Automatic early stopping using cross validation: quantifying the criteria, Neural Networks, vol. 11, no. 4, pp. 761-777, 1998.
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 761-777
    • Prechelt, L.1
  • 11
    • 44349114564 scopus 로고    scopus 로고
    • Trend time-series modeling and forecasting with neural networks
    • Qi, M., Zhang, P.: Trend time-series modeling and forecasting with neural networks. IEEE Transactions on Neural Networks, 19(5), 808-816-337 (2008)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.5 , pp. 808-816337
    • Qi, M.1    Zhang, P.2
  • 13
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation
    • Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415-1442 (1990)
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 14
    • 0033895381 scopus 로고    scopus 로고
    • An intelligent contraflow control method for real-time optimal traffic scheduling using artificial neural network, fuzzy pattern recognition and optimization
    • Xue, D., Dong, Z.: An intelligent contraflow control method for real-time optimal traffic scheduling using artificial neural network, fuzzy pattern recognition and optimization. IEEE Transactions on Control Systems Technology, 8(1) (2000)
    • (2000) IEEE Transactions on Control Systems Technology , vol.8 , Issue.1
    • Xue, D.1    Dong, Z.2
  • 15
    • 64449088863 scopus 로고    scopus 로고
    • Reliability based assignment in stochastic flow freight network
    • Xu, W., He, S., Song, R., Li, J.: Reliability based assignment in stochastic flow freight network. Applied Mathematics and Computation, 211(1), 85-94 (2009)
    • (2009) Applied Mathematics and Computation , vol.211 , Issue.1 , pp. 85-94
    • Xu, W.1    He, S.2    Song, R.3    Li, J.4
  • 16
  • 18
    • 0035654279 scopus 로고    scopus 로고
    • Feedforward neural network construction using cross validation
    • Setiono R., Feedforward neural network construction using cross validation, Neural Computation, vol. 13, no. 12, pp. 2865-2977, 2001.
    • (2001) Neural Computation , vol.13 , Issue.12 , pp. 2865-2977
    • Setiono, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.