메뉴 건너뛰기




Volumn 23, Issue 4, 2017, Pages 703-712

Using classification tree analysis to generate propensity score weights

Author keywords

causal inference; classification tree analysis; machine learning; propensity score

Indexed keywords

ADULT; ALGORITHM; ARTICLE; CLASSIFICATION TREE ANALYSIS; CONTROLLED STUDY; DISCRIMINANT ANALYSIS; FEMALE; HEALTH CARE COST; HEALTH PROGRAM; HEALTH SERVICE; HUMAN; LOGISTIC REGRESSION ANALYSIS; MALE; MEASUREMENT ACCURACY; PILOT STUDY; PRIORITY JOURNAL; PROBABILITY; PROPENSITY SCORE; RETROSPECTIVE STUDY; STANDARDIZATION; VALIDATION STUDY; COMPUTER SIMULATION; MACHINE LEARNING; MONTE CARLO METHOD; OBSERVATIONAL STUDY; PROCEDURES; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 85017149860     PISSN: 13561294     EISSN: 13652753     Source Type: Journal    
DOI: 10.1111/jep.12744     Document Type: Article
Times cited : (16)

References (55)
  • 1
    • 0346880128 scopus 로고    scopus 로고
    • Identification of causal effects using instrumental variables
    • Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Assoc. 1996;91:444-455.
    • (1996) J Am Stat Assoc , vol.91 , pp. 444-455
    • Angrist, J.D.1    Imbens, G.W.2    Rubin, D.B.3
  • 2
    • 33644913952 scopus 로고    scopus 로고
    • Evaluating disease management program effectiveness: an introduction to instrumental variables
    • Linden A, Adams J. Evaluating disease management program effectiveness: an introduction to instrumental variables. J Eval Clin Pract. 2006;12:148-154.
    • (2006) J Eval Clin Pract , vol.12 , pp. 148-154
    • Linden, A.1    Adams, J.2
  • 3
    • 77951622706 scopus 로고
    • The central role of propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of propensity score in observational studies for causal effects. Biometrika. 1983;70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 4
    • 10844259913 scopus 로고    scopus 로고
    • Principles for modeling propensity scores in medical research: a systematic literature review
    • Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiol Drug Saf. 2004;13:841e53.
    • (2004) Pharmacoepidemiol Drug Saf , vol.13 , pp. 841e53
    • Weitzen, S.1    Lapane, K.L.2    Toledano, A.Y.3    Hume, A.L.4    Mor, V.5
  • 6
    • 0027717184 scopus 로고
    • Effects of misspecification of the propensity score on estimators of treatment effect
    • Drake C. Effects of misspecification of the propensity score on estimators of treatment effect. Biometrics. 1993;49:1231-1236.
    • (1993) Biometrics , vol.49 , pp. 1231-1236
    • Drake, C.1
  • 7
    • 0000807820 scopus 로고    scopus 로고
    • Reconciling conflicting evidence on the performance of propensity-score matching methods
    • Smith J, Todd P. Reconciling conflicting evidence on the performance of propensity-score matching methods. Am Econ Rev. 2001;91:112-118.
    • (2001) Am Econ Rev , vol.91 , pp. 112-118
    • Smith, J.1    Todd, P.2
  • 8
    • 0023849378 scopus 로고
    • Asymmetric stratification. An outline for an efficient method for controlling confounding in cohort studies
    • Cook EF, Goldman L. Asymmetric stratification. An outline for an efficient method for controlling confounding in cohort studies. Am J Epidemiol. 1988;127:626-639.
    • (1988) Am J Epidemiol , vol.127 , pp. 626-639
    • Cook, E.F.1    Goldman, L.2
  • 9
    • 18544413070 scopus 로고    scopus 로고
    • Splenectomy and risk of blast transformation in myelofibrosis with myeloid metaplasia. Italian Cooperative Study Group on myeloid with myeloid metaplasia
    • Barosi G, Ambrosetti A, Centra A, et al. Splenectomy and risk of blast transformation in myelofibrosis with myeloid metaplasia. Italian Cooperative Study Group on myeloid with myeloid metaplasia. Blood. 1998;91:3630-3636.
    • (1998) Blood , vol.91 , pp. 3630-3636
    • Barosi, G.1    Ambrosetti, A.2    Centra, A.3
  • 10
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol Methods. 2004;9:403-425.
    • (2004) Psychol Methods , vol.9 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 12
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Stat Med. 2010;29(3):337-346.
    • (2010) Stat Med , vol.29 , Issue.3 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 13
    • 77953607621 scopus 로고    scopus 로고
    • Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
    • Westreich D, Lessler J, Funk MJ. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol. 2010;63(8):826-833.
    • (2010) J Clin Epidemiol , vol.63 , Issue.8 , pp. 826-833
    • Westreich, D.1    Lessler, J.2    Funk, M.J.3
  • 14
    • 84907480608 scopus 로고    scopus 로고
    • The role of prediction modeling in propensity score estimation: an evaluation of logistic regression, bCART, and the covariate-balancing propensity score
    • Wyss R, Ellis AR, Brookhart MA, et al. The role of prediction modeling in propensity score estimation: an evaluation of logistic regression, bCART, and the covariate-balancing propensity score. Am J Epidemiol. 2014;180:645-655.
    • (2014) Am J Epidemiol , vol.180 , pp. 645-655
    • Wyss, R.1    Ellis, A.R.2    Brookhart, M.A.3
  • 15
    • 84975271190 scopus 로고    scopus 로고
    • A case study of the impact of data-adaptive versus model-based estimation of the propensity scores on causal inferences from three inverse probability weighting estimators
    • Neugebauer R, Schmittdiel JA, van der Laan MJ. A case study of the impact of data-adaptive versus model-based estimation of the propensity scores on causal inferences from three inverse probability weighting estimators. Int J Biostat. 2016;12:131-155.
    • (2016) Int J Biostat , vol.12 , pp. 131-155
    • Neugebauer, R.1    Schmittdiel, J.A.2    van der Laan, M.J.3
  • 16
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: the two cultures (with comments and a rejoinder by the author)
    • Breiman L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Science. 2001;16:199-231.
    • (2001) Stat Science , vol.16 , pp. 199-231
    • Breiman, L.1
  • 17
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res. 2014;15:3133-3181.
    • (2014) J Mach Learn Res , vol.15 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 19
    • 0030862905 scopus 로고    scopus 로고
    • Predicting in-hospital mortality of patients with AIDS-related Pneumocystis carinii pneumonia: an example of hierarchically optimal classification tree analysis
    • Yarnold PR, Soltysik RC, Bennett CL. Predicting in-hospital mortality of patients with AIDS-related Pneumocystis carinii pneumonia: an example of hierarchically optimal classification tree analysis. Stat Med. 1997;16:1451-1463.
    • (1997) Stat Med , vol.16 , pp. 1451-1463
    • Yarnold, P.R.1    Soltysik, R.C.2    Bennett, C.L.3
  • 20
    • 84985746717 scopus 로고
    • Theoretical distributions of optima for univariate discrimination of random data
    • Yarnold PR, Soltysik RC. Theoretical distributions of optima for univariate discrimination of random data. Decis Sciences. 1991;22:739-752.
    • (1991) Decis Sciences , vol.22 , pp. 739-752
    • Yarnold, P.R.1    Soltysik, R.C.2
  • 21
    • 84992029480 scopus 로고    scopus 로고
    • Combining machine learning and propensity score weighting to estimate causal effects in multivalued treatments
    • Linden A, Yarnold PR. Combining machine learning and propensity score weighting to estimate causal effects in multivalued treatments. J Eval Clin Pract. 2016;22:875-885.
    • (2016) J Eval Clin Pract , vol.22 , pp. 875-885
    • Linden, A.1    Yarnold, P.R.2
  • 22
    • 84971669197 scopus 로고    scopus 로고
    • Using machine learning to model dose-response relationships
    • Linden A, Yarnold PR, Nallamothu BK. Using machine learning to model dose-response relationships. J Eval Clin Pract. 2016;22:860-867.
    • (2016) J Eval Clin Pract , vol.22 , pp. 860-867
    • Linden, A.1    Yarnold, P.R.2    Nallamothu, B.K.3
  • 23
    • 84963974217 scopus 로고    scopus 로고
    • Using machine learning to identify structural breaks in single-group interrupted time series designs
    • Linden A, Yarnold PR. Using machine learning to identify structural breaks in single-group interrupted time series designs. J Eval Clin Pract. 2016;22:855-859.
    • (2016) J Eval Clin Pract , vol.22 , pp. 855-859
    • Linden, A.1    Yarnold, P.R.2
  • 24
    • 0030495611 scopus 로고    scopus 로고
    • Discriminating geriatric and non-geriatric patients using functional status information: an example of classification tree analysis via UniODA
    • Yarnold PR. Discriminating geriatric and non-geriatric patients using functional status information: an example of classification tree analysis via UniODA. Educ Psychol Meas. 1996;56:656-667.
    • (1996) Educ Psychol Meas , vol.56 , pp. 656-667
    • Yarnold, P.R.1
  • 25
    • 84874546845 scopus 로고    scopus 로고
    • Automated CTA software: fundamental concepts and control commands
    • Soltysik RC, Yarnold PR. Automated CTA software: fundamental concepts and control commands. Optim Data Anal. 2010;1:144-160.
    • (2010) Optim Data Anal , vol.1 , pp. 144-160
    • Soltysik, R.C.1    Yarnold, P.R.2
  • 26
    • 80755143968 scopus 로고    scopus 로고
    • Identifying spin in health management evaluations
    • Linden A. Identifying spin in health management evaluations. J Eval Clin Pract. 2011;17:1223-1230.
    • (2011) J Eval Clin Pract , vol.17 , pp. 1223-1230
    • Linden, A.1
  • 28
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77:802-813.
    • (2008) J Anim Ecol , vol.77 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 29
    • 33646517317 scopus 로고    scopus 로고
    • Boosted regression (boosting): an introductory tutorial and a Stata plugin
    • Schonlau M. Boosted regression (boosting): an introductory tutorial and a Stata plugin. Stata J. 2005;5:330-354.
    • (2005) Stata J , vol.5 , pp. 330-354
    • Schonlau, M.1
  • 30
    • 85025610513 scopus 로고    scopus 로고
    • Novometric analysis with ordered class variables: the optimal alternative to linear regression analysis
    • Yarnold PR, Linden A. Novometric analysis with ordered class variables: the optimal alternative to linear regression analysis. Optim Data Anal. 2016;5:65-73.
    • (2016) Optim Data Anal , vol.5 , pp. 65-73
    • Yarnold, P.R.1    Linden, A.2
  • 31
    • 77149134942 scopus 로고    scopus 로고
    • Using propensity score-based weighting in the evaluation of health management programme effectiveness
    • Linden A, Adams JL. Using propensity score-based weighting in the evaluation of health management programme effectiveness. J Eval Clin Pract. 2010;16:175-179.
    • (2010) J Eval Clin Pract , vol.16 , pp. 175-179
    • Linden, A.1    Adams, J.L.2
  • 32
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550-560.
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Hernán, M.A.2    Brumback, B.3
  • 33
    • 0000157861 scopus 로고
    • Model-based direct adjustment
    • Rosenbaum PR. Model-based direct adjustment. J Am Stat Assoc. 1987;82:387-394.
    • (1987) J Am Stat Assoc , vol.82 , pp. 387-394
    • Rosenbaum, P.R.1
  • 34
    • 79959506759 scopus 로고    scopus 로고
    • Marginal mean weighting through stratification: adjustment for selection bias in multilevel data
    • Hong G. Marginal mean weighting through stratification: adjustment for selection bias in multilevel data. J Educ Behav Stat. 2010;35:499-531.
    • (2010) J Educ Behav Stat , vol.35 , pp. 499-531
    • Hong, G.1
  • 35
    • 21044448156 scopus 로고    scopus 로고
    • Evaluating disease management program effectiveness: an introduction to the bootstrap technique
    • Linden A, Adams J, Roberts N. Evaluating disease management program effectiveness: an introduction to the bootstrap technique. Dis Manag Health Out. 2005;13:159-167.
    • (2005) Dis Manag Health Out , vol.13 , pp. 159-167
    • Linden, A.1    Adams, J.2    Roberts, N.3
  • 36
    • 3242681474 scopus 로고    scopus 로고
    • The generalizability of disease management program results: getting from here to there
    • Linden A, Adams J, Roberts N. The generalizability of disease management program results: getting from here to there. Manag Care Interface. 2004;17:38-45.
    • (2004) Manag Care Interface , vol.17 , pp. 38-45
    • Linden, A.1    Adams, J.2    Roberts, N.3
  • 37
    • 84865349347 scopus 로고
    • Standard distance in univariate and multivariate analysis
    • Flury BK, Reidwyl H. Standard distance in univariate and multivariate analysis. Am Stat. 1986;40:249-251.
    • (1986) Am Stat , vol.40 , pp. 249-251
    • Flury, B.K.1    Reidwyl, H.2
  • 38
    • 84885019282 scopus 로고    scopus 로고
    • Using balance statistics to determine the optimal number of controls in matching studies
    • Linden A, Samuels SJ. Using balance statistics to determine the optimal number of controls in matching studies. J Eval Clin Pract. 2013;19:968-975.
    • (2013) J Eval Clin Pract , vol.19 , pp. 968-975
    • Linden, A.1    Samuels, S.J.2
  • 39
    • 0035044501 scopus 로고    scopus 로고
    • Validating recommendations for coronary angiography following an acute myocardial infarction in the elderly: a matched analysis using propensity scores
    • Normand SLT, Landrum MB, Guadagnoli E, et al. Validating recommendations for coronary angiography following an acute myocardial infarction in the elderly: a matched analysis using propensity scores. J Clin Epidemiol. 2001;54:387-398.
    • (2001) J Clin Epidemiol , vol.54 , pp. 387-398
    • Normand, S.L.T.1    Landrum, M.B.2    Guadagnoli, E.3
  • 41
    • 85025652417 scopus 로고    scopus 로고
    • Theoretical aspects of the D statistic
    • Yarnold PR, Linden A. Theoretical aspects of the D statistic. Optim Data Anal. 2016;5:171-174.
    • (2016) Optim Data Anal , vol.5 , pp. 171-174
    • Yarnold, P.R.1    Linden, A.2
  • 42
    • 85025677673 scopus 로고    scopus 로고
    • Determining jackknife ESS for a CTA model with chaotic instability
    • Yarnold PR. Determining jackknife ESS for a CTA model with chaotic instability. Optim Data Anal. 2016;5:11-14.
    • (2016) Optim Data Anal , vol.5 , pp. 11-14
    • Yarnold, P.R.1
  • 43
    • 84994884036 scopus 로고    scopus 로고
    • LOOCLASS: stata module for generating classification statistics of leave-one-out cross-validation for binary outcomes
    • Available from, Accessed on January 12, 2017
    • Linden A. LOOCLASS: stata module for generating classification statistics of leave-one-out cross-validation for binary outcomes. Statistical Software Components s458032, Boston College Department of Economics, 2015. Available from: http://ideas.repec.org/c/boc/bocode/s458032.html Accessed on January 12, 2017.
    • (2015) Statistical Software Components s458032, Boston College Department of Economics
    • Linden, A.1
  • 44
    • 85025660761 scopus 로고    scopus 로고
    • COVBAL: stata module for generating covariate balance statistics
    • Available from, Accessed on January 12, 2017
    • Linden A. COVBAL: stata module for generating covariate balance statistics. Statistical Software Components s458188, Boston College Department of Economics, 2016. Available from http://ideas.repec.org/c/boc/bocode/s458188.html Accessed on January 12, 2017.
    • (2016) Statistical Software Components s458188, Boston College Department of Economics
    • Linden, A.1
  • 45
    • 77956614805 scopus 로고    scopus 로고
    • Convergence failures in logistic regression
    • Allison PD. Convergence failures in logistic regression. SAS Global Forum. 2008;360:1-11.
    • (2008) SAS Global Forum , vol.360 , pp. 1-11
    • Allison, P.D.1
  • 46
    • 33644914702 scopus 로고    scopus 로고
    • Strengthening the case for disease management effectiveness: unhiding the hidden bias
    • Linden A, Adams J, Roberts N. Strengthening the case for disease management effectiveness: unhiding the hidden bias. J Eval Clin Pract. 2006;12:140-147.
    • (2006) J Eval Clin Pract , vol.12 , pp. 140-147
    • Linden, A.1    Adams, J.2    Roberts, N.3
  • 47
    • 77957806232 scopus 로고    scopus 로고
    • Matching methods for causal inference: a review and a look forward
    • Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Science. 2010;25:1-21.
    • (2010) Stat Science , vol.25 , pp. 1-21
    • Stuart, E.A.1
  • 48
    • 77149163479 scopus 로고    scopus 로고
    • Evaluating health management programmes over time. Application of propensity score-based weighting to longitudinal data
    • Linden A, Adams JL. Evaluating health management programmes over time. Application of propensity score-based weighting to longitudinal data. J Eval Clin Pract. 2010;16:180-185.
    • (2010) J Eval Clin Pract , vol.16 , pp. 180-185
    • Linden, A.1    Adams, J.L.2
  • 49
    • 80755168308 scopus 로고    scopus 로고
    • Applying a propensity-score based weighting model to interrupted time series data: improving causal inference in program evaluation
    • Linden A, Adams JL. Applying a propensity-score based weighting model to interrupted time series data: improving causal inference in program evaluation. J Eval Clin Pract. 2011;17:1231-1238.
    • (2011) J Eval Clin Pract , vol.17 , pp. 1231-1238
    • Linden, A.1    Adams, J.L.2
  • 50
    • 84858161540 scopus 로고    scopus 로고
    • Combining the regression-discontinuity design and propensity-score based weighting to improve causal inference in program evaluation
    • Linden A, Adams JL. Combining the regression-discontinuity design and propensity-score based weighting to improve causal inference in program evaluation. J Eval Clin Pract. 2012;18(2):317-325.
    • (2012) J Eval Clin Pract , vol.18 , Issue.2 , pp. 317-325
    • Linden, A.1    Adams, J.L.2
  • 51
    • 84923029387 scopus 로고    scopus 로고
    • Combining propensity score-based stratification and weighting to improve causal inference in the evaluation of health care interventions
    • Linden A. Combining propensity score-based stratification and weighting to improve causal inference in the evaluation of health care interventions. J Eval Clin Pract. 2014;20(6):1065-1071.
    • (2014) J Eval Clin Pract , vol.20 , Issue.6 , pp. 1065-1071
    • Linden, A.1
  • 52
    • 6344269336 scopus 로고    scopus 로고
    • Evaluating disease management program effectiveness: an introduction to survival analysis
    • Linden A, Adams J, Roberts N. Evaluating disease management program effectiveness: an introduction to survival analysis. Dis Manag. 2004;7:180-190.
    • (2004) Dis Manag , vol.7 , pp. 180-190
    • Linden, A.1    Adams, J.2    Roberts, N.3
  • 53
    • 84994807610 scopus 로고    scopus 로고
    • Using data mining techniques to characterize participation in observational studies
    • Linden A, Yarnold PR. Using data mining techniques to characterize participation in observational studies. J Eval Clin Pract. 2016;22:839-847.
    • (2016) J Eval Clin Pract , vol.22 , pp. 839-847
    • Linden, A.1    Yarnold, P.R.2
  • 54
    • 12144267915 scopus 로고    scopus 로고
    • Disease management interventions: what's in the black box?
    • Linden A, Roberts N. Disease management interventions: what's in the black box? Dis Manag. 2004;7:275-291.
    • (2004) Dis Manag , vol.7 , pp. 275-291
    • Linden, A.1    Roberts, N.2
  • 55
    • 33646522211 scopus 로고    scopus 로고
    • Disease management interventions II: what else is in the black box?
    • Linden A, Butterworth S, Roberts N. Disease management interventions II: what else is in the black box? Dis Manag. 2006;9:73-85.
    • (2006) Dis Manag , vol.9 , pp. 73-85
    • Linden, A.1    Butterworth, S.2    Roberts, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.