-
4
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
5
-
-
85032751458
-
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
-
Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag., 29(6):82-97, 2012.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Li, D.2
Dong, Y.3
Dahl, G.4
Mohamed, A.-R.5
Jaitly, N.6
Senior, R.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.10
Kingsbury, B.11
-
6
-
-
84890525984
-
Deep convolutional neural networks for LVCSR
-
Tara N. Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhadran. Deep convolutional neural networks for LVCSR. In 2013 IEEE Int. Conf. Acoust. Speech Signal Process., pages 8614-8618, 2013.
-
(2013)
2013 IEEE Int. Conf. Acoust. Speech Signal Process
, pp. 8614-8618
-
-
Sainath, T.N.1
Mohamed, A.-R.2
Kingsbury, B.3
Ramabhadran, B.4
-
8
-
-
84956853985
-
Tutorial on practical tips of the most influential data preprocessing algorithms in data mining
-
Salvador García, Julián Luengo, and Francisco Herrera. Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowledge-Based Systems, 98:1-29, 2016.
-
(2016)
Knowledge-Based Systems
, vol.98
, pp. 1-29
-
-
Salvador, G.1
Luengo, J.2
Herrera, F.3
-
9
-
-
84861776914
-
Multi-column deep neural network for traffic sign classification
-
Dan Ciresan, Ueli Meier, Jonathan Masci, and J¨urgen Schmidhuber. Multi-column deep neural network for traffic sign classification. Neural Networks, 32:333-338, 2012.
-
(2012)
Neural Networks
, vol.32
, pp. 333-338
-
-
Ciresan, D.1
Meier, U.2
Masci, J.3
Schmidhuber, J.4
-
12
-
-
84990065698
-
-
Online; accessed 09 november 2016
-
Rodrigo Benenson. Classification datasets results. http://rodrigob.github.io/are_we_ there_yet/build/classification_datasets_ results.html, 2013. Online; accessed 09 november 2016.
-
(2013)
Classification Datasets Results
-
-
Benenson, R.1
-
14
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural networks using dropconnect. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 1058-1066, 2013.
-
(2013)
Proceedings of the 30Th International Conference on Machine Learning (ICML-13)
, pp. 1058-1066
-
-
Li, W.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
-
16
-
-
77952610482
-
Performance and scalability of gpu-based convolutional neural networks
-
Daniel Strigl, Klaus Kofler, and Stefan Podlipnig. Performance and scalability of gpu-based convolutional neural networks. In PDP, pages 317-324, 2010.
-
(2010)
PDP
, pp. 317-324
-
-
Strigl, D.1
Kofler, K.2
Podlipnig, S.3
-
17
-
-
84947041871
-
ImageNet Large Scale Visual Recognition Challenge
-
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis., 115(3):211-252, 2015.
-
(2015)
Int. J. Comput. Vis.
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Hao, S.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, R.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Li, F.-F.12
-
18
-
-
0022471098
-
Learning representations by back-propagating errors
-
David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533-536, 1986.
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
19
-
-
0032983160
-
On the momentum term in gradient descent learning algorithms
-
Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1):145-151, 1999.
-
(1999)
Neural Networks
, vol.12
, Issue.1
, pp. 145-151
-
-
Qian, N.1
-
22
-
-
84890527827
-
Improving deep neural networks for lvcsr using rectified linear units and dropout
-
IEEE
-
George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep neural networks for lvcsr using rectified linear units and dropout. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 8609-8613. IEEE, 2013.
-
(2013)
2013 IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 8609-8613
-
-
Dahl, G.E.1
Sainath, T.N.2
Hinton, G.E.3
-
23
-
-
84887090067
-
A survey of multiple classifier systems as hybrid systems
-
Michał Wózniak, Manuel Graña, and Emilio Corchado. A survey of multiple classifier systems as hybrid systems. Information Fusion, 16:3-17, 2014.
-
(2014)
Information Fusion
, vol.16
, pp. 3-17
-
-
Michał, W.1
Manuel, G.2
Corchado, E.3
-
24
-
-
0025508916
-
A statistical approach to learning and generalization in layered neural networks
-
Esther Levin, Naftali Tishby, and SARA A Solla. A statistical approach to learning and generalization in layered neural networks. Proceedings of the IEEE, 78(10):1568-1574, 1990.
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.10
, pp. 1568-1574
-
-
Levin, E.1
Tishby, N.2
Solla, S.A.3
-
25
-
-
85018754273
-
-
Online; accessed 14 octuber 2016
-
Deep Learning Libraries by Language. http://www.teglor.com/b/ deep-learning-libraries-language-cm569/, 2016. Online; accessed 14 octuber 2016.
-
(2016)
-
-
-
26
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM
-
Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages 675-678. ACM, 2014.
-
(2014)
Proceedings of the 22Nd ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
28
-
-
85018755333
-
-
Online; accessed 31 octuber 2016
-
Fast convolutional neural networks in C++/CUDA. https://code.google.com/archive/p/ cuda-convnet2/, 2016. Online; accessed 31 octuber 2016.
-
(2016)
-
-
-
30
-
-
85067565710
-
Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree
-
Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. In International Conference on Artificial Intelligence and Statistics, 2016.
-
(2016)
International Conference on Artificial Intelligence and Statistics
-
-
Lee, C.-Y.1
Gallagher, P.W.2
Zhuowen, T.3
-
33
-
-
84866714584
-
Multi-column deep neural networks for image classification
-
IEEE
-
Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural networks for image classification. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 3642-3649. IEEE, 2012.
-
(2012)
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference On
, pp. 3642-3649
-
-
Ciregan, D.1
Meier, U.2
Schmidhuber, J.3
|