메뉴 건너뛰기




Volumn 5, Issue 1, 2017, Pages 19-31

Liberal entity extraction: Rapid construction of fine-grained entity typing systems

Author keywords

fine grained entity typing; Liberal Information Extraction; multi level entity mention and representation; unsupervised learning

Indexed keywords

ALGORITHM; DATA MINING; HUMAN; NATURAL LANGUAGE PROCESSING; PROCEDURES; SEMANTICS; THEORETICAL MODEL; TRANSLATIONAL RESEARCH;

EID: 85016399563     PISSN: 21676461     EISSN: 2167647X     Source Type: Journal    
DOI: 10.1089/big.2017.0012     Document Type: Article
Times cited : (17)

References (46)
  • 1
    • 0002686947 scopus 로고    scopus 로고
    • Message understanding conference-6: A brief history
    • Grishman R, Sundheim B. Message understanding conference-6: A brief history. In: COLING, 1996, pp. 466-471.
    • (1996) COLING , pp. 466-471
    • Grishman, R.1    Sundheim, B.2
  • 2
    • 80053262847 scopus 로고    scopus 로고
    • A shortest path dependency kernel for relation extraction
    • Bunescu R, Mooney RJ. A shortest path dependency kernel for relation extraction. In: HLT-EMNLP, 2005, pp. 724-731.
    • (2005) HLT-EMNLP , pp. 724-731
    • Bunescu, R.1    Mooney, R.J.2
  • 3
    • 84893411649 scopus 로고    scopus 로고
    • Using encyclopedic knowledge for named entity disambiguation
    • Bunescu R, Pasca M. Using encyclopedic knowledge for named entity disambiguation. In: EACL, Volume 6, 2006, pp. 9-16.
    • (2006) EACL , vol.6 , pp. 9-16
    • Bunescu, R.1    Pasca, M.2
  • 4
    • 84959873272 scopus 로고    scopus 로고
    • Finet: Context-aware finegrained named entity typing
    • Corro LD, Abujabal A, Gemulla R, Weikum G. Finet: Context-aware finegrained named entity typing. In: EMNLP, 2015, pp. 868-878.
    • (2015) EMNLP , pp. 868-878
    • Corro, L.D.1    Abujabal, A.2    Gemulla, R.3    Weikum, G.4
  • 5
    • 85144480129 scopus 로고    scopus 로고
    • Dependency tree kernels for relation extraction
    • Culotta A, Sorensen J. Dependency tree kernels for relation extraction. In: ACL, 2004, pp. 423-429.
    • (2004) ACL , pp. 423-429
    • Culotta, A.1    Sorensen, J.2
  • 6
    • 84943800291 scopus 로고    scopus 로고
    • A joint model for entity analysis: Coreference, typing, and linking
    • Durrett G, Klein D. A joint model for entity analysis: Coreference, typing, and linking. In: TACL, 2014, pp. 477-490.
    • (2014) TACL , pp. 477-490
    • Durrett, G.1    Klein, D.2
  • 7
    • 74549224468 scopus 로고    scopus 로고
    • Named entity disambiguation by leveraging wikipedia semantic knowledge
    • Han X, Zhao J. Named entity disambiguation by leveraging wikipedia semantic knowledge. In: CIKM, 2009, pp. 215-224.
    • (2009) CIKM , pp. 215-224
    • Han, X.1    Zhao, J.2
  • 8
    • 85118960253 scopus 로고    scopus 로고
    • Discovering relations among named entities from large corpora
    • Hasegawa T, Sekine S, Grishman R. Discovering relations among named entities from large corpora. In: ACL, 2004, pp. 415-422.
    • (2004) ACL , pp. 415-422
    • Hasegawa, T.1    Sekine, S.2    Grishman, R.3
  • 10
    • 0037339910 scopus 로고    scopus 로고
    • Determining semantic similarity among entity classes from different ontologies
    • Rodriguez MA, Egenhofer MJ. Determining semantic similarity among entity classes from different ontologies. In: TKDE, 2003, pp. 442-456.
    • (2003) TKDE , pp. 442-456
    • Rodriguez, M.A.1    Egenhofer, M.J.2
  • 11
    • 84871098142 scopus 로고    scopus 로고
    • Hierarchical target type identification for entityoriented queries
    • Balog K, Neumayer R. Hierarchical target type identification for entityoriented queries. In: CIKM, 2012, pp. 2391-2394.
    • (2012) CIKM , pp. 2391-2394
    • Balog, K.1    Neumayer, R.2
  • 12
    • 77957984737 scopus 로고    scopus 로고
    • Searching for individual entities: A query analysis
    • Bazzanella B, Stoermer H, Bouquet P. Searching for individual entities: A query analysis. In: IRI, 2010, pp. 115-120.
    • (2010) IRI , pp. 115-120
    • Bazzanella, B.1    Stoermer, H.2    Bouquet, P.3
  • 14
    • 84968725217 scopus 로고    scopus 로고
    • C hang. Open domain question answering via semantic enrichment
    • Sun H, Ma H, Yih W.-t, et al. C hang. Open domain question answering via semantic enrichment. In: WWW, 2015, pp. 1045-1055.
    • (2015) WWW , pp. 1045-1055
    • Sun, H.1    Ma, H.2    Yih, W.-T.3
  • 15
    • 33751353906 scopus 로고    scopus 로고
    • Fine-grained named entity recognition using conditional random fields for question answering
    • Lee C, Hwang Y.-G, Oh H.-J, et al. Fine-grained named entity recognition using conditional random fields for question answering. In: Information Retrieval Technology, 2006, pp. 581-587.
    • (2006) Information Retrieval Technology , pp. 581-587
    • Lee, C.1    Hwang, Y.-G.2    Oh, H.-J.3
  • 16
    • 84868276493 scopus 로고    scopus 로고
    • Fine-grained entity recognition
    • Xiao L, Weld DS. Fine-grained entity recognition. In AAAI, 2012, pp. 94-100.
    • (2012) AAAI , pp. 94-100
    • Xiao, L.1    Weld, D.S.2
  • 17
    • 38049050319 scopus 로고    scopus 로고
    • Fine grained classification of named entities
    • Fleischman M, Hovy E. Fine grained classification of named entities. In: COLING, 2002, pp. 1-7.
    • (2002) COLING , pp. 1-7
    • Fleischman, M.1    Hovy, E.2
  • 18
    • 84871052276 scopus 로고    scopus 로고
    • Extended named entity ontology with attribute information
    • Sekine S. Extended named entity ontology with attribute information. In: LREC, 2008, pp. 52-57.
    • (2008) LREC , pp. 52-57
    • Sekine, S.1
  • 20
    • 57149137628 scopus 로고    scopus 로고
    • Freebase: A collaboratively created graph database for structuring human knowledge
    • Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge. In: SIGMOD, 2008, pp. 1247-1249.
    • (2008) SIGMOD , pp. 1247-1249
    • Bollacker, K.1    Evans, C.2    Paritosh, P.3
  • 21
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty J, McCallum A, Pereira FC. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML, 2001, pp. 282-289.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.3
  • 22
    • 85016412687 scopus 로고    scopus 로고
    • Context-dependent fine-grained entity type tagging
    • Gillick D, Lazic N, Ganchev K, et al. Context-dependent fine-grained entity type tagging. In: CoRR, 2014, pp. 1-9.
    • (2014) CoRR , pp. 1-9
    • Gillick, D.1    Lazic, N.2    Ganchev, K.3
  • 23
    • 84944047410 scopus 로고    scopus 로고
    • Embedding methods for fine grained entity type classification
    • Yogatama D, Gillick D, Lazic N. Embedding methods for fine grained entity type classification. In: ACL-IJCNLP, 2016, pp. 291-296.
    • (2016) ACL-IJCNLP , pp. 291-296
    • Yogatama, D.1    Gillick, D.2    Lazic, N.3
  • 24
    • 84876787835 scopus 로고    scopus 로고
    • No noun phrase left behind: Detecting and typing unlinkable entities
    • Lin T, Etzioni O, et al. No noun phrase left behind: Detecting and typing unlinkable entities. In: ACL, 2012, pp. 893-903.
    • (2012) ACL , pp. 893-903
    • Lin, T.1    Etzioni, O.2
  • 25
    • 84959883875 scopus 로고    scopus 로고
    • Hyena: Hierarchical type classification for entity names
    • Yosef A, Bauer S, Hoffart J, et al. Hyena: Hierarchical type classification for entity names. In: COLING, 2012, pp. 1361-1370.
    • (2012) COLING , pp. 1361-1370
    • Yosef, A.1    Bauer, S.2    Hoffart, J.3
  • 26
    • 84870293219 scopus 로고    scopus 로고
    • Yago2: A spatially and temporally enhanced knowledge base from wikipedia
    • Hoffart J, Suchanek FM, Berberich K, Weikum G. Yago2: A spatially and temporally enhanced knowledge base from wikipedia. In: IJCAI, 2013, pp. 28-61.
    • (2013) IJCAI , pp. 28-61
    • Hoffart, J.1    Suchanek, F.M.2    Berberich, K.3    Weikum, G.4
  • 27
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning. In: ACL, 2010, pp. 384-394.
    • (2010) ACL , pp. 384-394
    • Turian, J.1    Ratinov, L.2    Bengio, Y.3
  • 28
    • 84926179397 scopus 로고    scopus 로고
    • Linguistic regularities in continuous space word representations
    • Mikolov T, Yih W.-T, Zweig G. Linguistic regularities in continuous space word representations. In: HLT-NAACL, 2013, pp. 746-751.
    • (2013) HLT-NAACL , pp. 746-751
    • Mikolov, T.1    Yih, W.-T.2    Zweig, G.3
  • 29
    • 84959861429 scopus 로고    scopus 로고
    • An exploration of embeddings for generalized phrases
    • Yin W, Schutze H. An exploration of embeddings for generalized phrases. In: ACL Workshop on Student Research, 2014, pp. 41-47.
    • (2014) ACL Workshop on Student Research , pp. 41-47
    • Yin, W.1    Schutze, H.2
  • 30
    • 80053288309 scopus 로고    scopus 로고
    • Composition in distributional models of semantics
    • Mitchell J, Lapata M. Composition in distributional models of semantics. Cogn Sci 2010;34:1388-1429.
    • (2010) Cogn Sci , vol.34 , pp. 1388-1429
    • Mitchell, J.1    Lapata, M.2
  • 31
    • 85011983779 scopus 로고    scopus 로고
    • Liberal event extraction and event schema induction
    • Huang L, Cassidy T, Feng X, et al. Liberal event extraction and event schema induction. In: ACL, 2016, pp. 258-268.
    • (2016) ACL , pp. 258-268
    • Huang, L.1    Cassidy, T.2    Feng, X.3
  • 32
    • 84906929292 scopus 로고    scopus 로고
    • The role of syntax in vector space models of compositional semantics
    • Hermann K, Blunsom P. The role of syntax in vector space models of compositional semantics. In: ACL, 2013, pp. 894-904.
    • (2013) ACL , pp. 894-904
    • Hermann, K.1    Blunsom, P.2
  • 33
    • 84906925854 scopus 로고    scopus 로고
    • Grounded compositional semantics for finding and describing images with sentences
    • Socher R, Karpathy A, Le Q, et al. Grounded compositional semantics for finding and describing images with sentences. In TACL, 2013, pp. 207-218.
    • (2013) TACL , pp. 207-218
    • Socher, R.1    Karpathy, A.2    Le, Q.3
  • 34
    • 84926358845 scopus 로고    scopus 로고
    • Recursive deep models for semantic compositionality over a sentiment treebank
    • Socher R, Perelygin A, Wu J, et al. Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP, 2013, pp. 1642-1653.
    • (2013) EMNLP , pp. 1642-1653
    • Socher, R.1    Perelygin, A.2    Wu, J.3
  • 35
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending k-means with efficient estimation of the number of clusters
    • Pelleg D, Moore A. X-means: Extending k-means with efficient estimation of the number of clusters. In: ZCML, 2000, pp. 727-734.
    • (2000) ZCML , pp. 727-734
    • Pelleg, D.1    Moore, A.2
  • 36
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. In: CoRR, 2013, pp. 1-12.
    • (2013) CoRR , pp. 1-12
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 37
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. In: NIPS, 2013, pp. 3111-3119.
    • (2013) NIPS , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3
  • 38
    • 84941075680 scopus 로고    scopus 로고
    • Learning word embeddings from dependency relations
    • Zhao Y, Huang S, Dai X, et al. Learning word embeddings from dependency relations. In: IALP, 2014, pp. 123-127.
    • (2014) IALP , pp. 123-127
    • Zhao, Y.1    Huang, S.2    Dai, X.3
  • 39
    • 84904687441 scopus 로고    scopus 로고
    • Sparse autoencoder
    • Ng A. Sparse autoencoder. CS294A Lecture Notes, 72, 2011, pp. 1-19.
    • (2011) CS294A Lecture Notes , vol.72 , pp. 1-19
    • Ng, A.1
  • 40
    • 84968754224 scopus 로고    scopus 로고
    • Line: Large-scale information network embedding
    • Tang J, Qu M, Wang M, et al. Line: Large-scale information network embedding. In: WWW, 2015, pp. 1067-1077.
    • (2015) WWW , pp. 1067-1077
    • Tang, J.1    Qu, M.2    Wang, M.3
  • 41
    • 84959932002 scopus 로고    scopus 로고
    • Language and domain independent entity linking with quantified collective validation
    • Wang H, Zheng JG, Ma X, et al. Language and domain independent entity linking with quantified collective validation. In: EMNLP, 2015, pp. 695-704.
    • (2015) EMNLP , pp. 695-704
    • Wang, H.1    Zheng, J.G.2    Ma, X.3
  • 43
    • 84859918687 scopus 로고    scopus 로고
    • Incorporating non-local information into information extraction systems by gibbs sampling
    • Finkel JR, Grenager T, Manning C. Incorporating non-local information into information extraction systems by gibbs sampling. In: ACL, 2005, pp. 363-370.
    • (2005) ACL , pp. 363-370
    • Finkel, J.R.1    Grenager, T.2    Manning, C.3
  • 44
    • 84906930520 scopus 로고    scopus 로고
    • A discriminative graph-based parser for the abstract meaning representation
    • Flanigan J, Thomson S, Carbonell J, et al. A discriminative graph-based parser for the abstract meaning representation. In: ACL, 2014, pp. 1426-1436.
    • (2014) ACL , pp. 1426-1436
    • Flanigan, J.1    Thomson, S.2    Carbonell, J.3
  • 45
    • 84960158690 scopus 로고    scopus 로고
    • Unsupervised entity linking with abstract meaning representation
    • Pan X, Cassidy T, Hermjakob U, et al. Unsupervised entity linking with abstract meaning representation. In: HLT-NAACL, 2015, pp. 1130-1139.
    • (2015) HLT-NAACL , pp. 1130-1139
    • Pan, X.1    Cassidy, T.2    Hermjakob, U.3
  • 46
    • 84862210873 scopus 로고    scopus 로고
    • Overview of the tac 2010 knowledge base population track
    • Ji H, Grishman R, Dang HT, et al. Overview of the tac 2010 knowledge base population track. In: TAC, 2010. pp. 3-35.
    • (2010) TAC , pp. 3-35
    • Ji, H.1    Grishman, R.2    Dang, H.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.