메뉴 건너뛰기




Volumn 18, Issue , 2017, Pages 1-5

Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning

Author keywords

Ensemble learning; Imbalanced dataset; Machine learning; Over sampling; Python; Under sampling

Indexed keywords

ARTIFICIAL INTELLIGENCE; HIGH LEVEL LANGUAGES; OPEN SOURCE SOFTWARE; PATTERN RECOGNITION;

EID: 85016274615     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1883)

References (22)
  • 1
    • 85007318545 scopus 로고    scopus 로고
    • Balancing training data for automated annotation of keywords: A case study
    • G. E. Batista, A. L. Bazzan, and M. C. Monard. Balancing training data for automated annotation of keywords: a case study. In WOB, pages 10-18, 2003.
    • (2003) WOB , pp. 10-18
    • Batista, G.E.1    Bazzan, A.L.2    Monard, M.C.3
  • 4
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-smote: A new over-sampling method in imbalanced data sets learning
    • Springer
    • H. Han, W.-Y. Wang, and B.-H. Mao. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In International Conference on Intelligent Computing, pages 878-887. Springer, 2005.
    • (2005) International Conference on Intelligent Computing , pp. 878-887
    • Han, H.1    Wang, W.-Y.2    Mao, B.-H.3
  • 5
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • May
    • P. Hart. The condensed nearest neighbor rule. Information Theory, IEEE Transactions on, 14(3):515-516, May 1968.
    • (1968) Information Theory, IEEE Transactions on , vol.14 , Issue.3 , pp. 515-516
    • Hart, P.1
  • 8
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • Nashville, USA
    • M. Kubat, S. Matwin, et al. Addressing the curse of imbalanced training sets: one-sided selection. In International Conference in Machine Learning, volume 97, pages 179-186. Nashville, USA, 1997.
    • (1997) International Conference in Machine Learning , vol.97 , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 9
    • 84946435747 scopus 로고    scopus 로고
    • Caret: Classification and regression training
    • M. Kuhn. Caret: classification and regression training. Astrophysics Source Code Library, 1:05003, 2015.
    • (2015) Astrophysics Source Code Library , vol.1 , pp. 05003
    • Kuhn, M.1
  • 17
    • 84898809250 scopus 로고    scopus 로고
    • An instance level analysis of data complexity
    • M. R. Smith, T. Martinez, and C. Giraud-Carrier. An instance level analysis of data complexity. Machine learning, 95(2):225-256, 2014.
    • (2014) Machine Learning , vol.95 , Issue.2 , pp. 225-256
    • Smith, M.R.1    Martinez, T.2    Giraud-Carrier, C.3
  • 21
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. Systems, Man and Cybernetics, IEEE Transactions on, (3): 408-421, 1972.
    • (1972) Systems, Man and Cybernetics, IEEE Transactions on , Issue.3 , pp. 408-421
    • Wilson, D.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.