메뉴 건너뛰기




Volumn 13, Issue 1, 2017, Pages

An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping

Author keywords

Canopy cover; Color vegetation index; High throughput field phenotyping; Image analysis; Image segmentation; Light contrast; Machine learning

Indexed keywords


EID: 85016112131     PISSN: None     EISSN: 17464811     Source Type: Journal    
DOI: 10.1186/s13007-017-0168-4     Document Type: Article
Times cited : (40)

References (30)
  • 1
    • 83055180602 scopus 로고    scopus 로고
    • Phenomics-technologies to relieve the phenotyping bottleneck
    • Furbank RT, Tester M. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16:635-44. doi: 10.1016/j.tplants.2011.09.005.
    • (2011) Trends Plant Sci , vol.16 , pp. 635-644
    • Furbank, R.T.1    Tester, M.2
  • 3
    • 84976415436 scopus 로고    scopus 로고
    • Special issue on computer vision and image analysis in plant phenotyping
    • Scharr H, Dee H, French AP, Tsaftaris SA. Special issue on computer vision and image analysis in plant phenotyping. Mach Vis Appl. 2016;27:607-9. doi: 10.1007/s00138-016-0787-1.
    • (2016) Mach Vis Appl , vol.27 , pp. 607-609
    • Scharr, H.1    Dee, H.2    French, A.P.3    Tsaftaris, S.A.4
  • 4
    • 84951966535 scopus 로고    scopus 로고
    • An opinion on imaging challenges in phenotyping field crops
    • Kelly D, Vatsa A, Mayham W, Ngô L, Thompson A, Kazic T. An opinion on imaging challenges in phenotyping field crops. Mach Vis Appl. 2016;27:681-94. doi: 10.1007/s00138-015-0728-4.
    • (2016) Mach Vis Appl , vol.27 , pp. 681-694
    • Kelly, D.1    Vatsa, A.2    Mayham, W.3    Ngô, L.4    Thompson, A.5    Kazic, T.6
  • 5
    • 85006277393 scopus 로고    scopus 로고
    • Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV
    • Duan T, Zheng B, Guo W, Ninomiya S, Guo Y, Chapman SC. Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV. Funct Plant Biol. 2017;44:169-83. doi: 10.1071/FP16123.
    • (2017) Funct Plant Biol , vol.44 , pp. 169-183
    • Duan, T.1    Zheng, B.2    Guo, W.3    Ninomiya, S.4    Guo, Y.5    Chapman, S.C.6
  • 6
    • 84927937235 scopus 로고    scopus 로고
    • From image processing to computer vision: plant imaging grows up
    • Dee H, French A. From image processing to computer vision: plant imaging grows up. Funct Plant Biol. 2015;42:3-5.
    • (2015) Funct Plant Biol. , vol.42 , pp. 3-5
    • Dee, H.1    French, A.2
  • 7
    • 85016124341 scopus 로고    scopus 로고
    • Field Scanalyser: an automated robotic field phenotyping platform for detailed crop monitoring
    • Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M. Field Scanalyser: an automated robotic field phenotyping platform for detailed crop monitoring. Funct Plant Biol. 2016.
    • (2016) Funct Plant Biol
    • Virlet, N.1    Sabermanesh, K.2    Sadeghi-Tehran, P.3    Hawkesford, M.4
  • 8
    • 85006255885 scopus 로고    scopus 로고
    • The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system
    • Kirchgessner N, Liebisch F, Yu K, Pfeifer J, Friedli M, Hund A, et al. The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Funct Plant Biol. 2017;44:154-68. doi: 10.1071/FP16165.
    • (2017) Funct Plant Biol , vol.44 , pp. 154-168
    • Kirchgessner, N.1    Liebisch, F.2    Yu, K.3    Pfeifer, J.4    Friedli, M.5    Hund, A.6
  • 9
    • 84908509157 scopus 로고    scopus 로고
    • Proximal remote sensing buggies and potential applications for field-based phenotyping
    • Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy. 2014;4:349-79. doi: 10.3390/agronomy4030349.
    • (2014) Agronomy , vol.4 , pp. 349-379
    • Deery, D.1    Jimenez-Berni, J.2    Jones, H.3    Sirault, X.4    Furbank, R.5
  • 10
    • 85032751744 scopus 로고    scopus 로고
    • Image analysis: the new bottleneck in plant phenotyping
    • Minervini M, Scharr H, Tsaftaris SA. Image analysis: the new bottleneck in plant phenotyping. IEEE Signal Process Mag. 2015;32:126-31. doi: 10.1109/MSP.2015.2405111.
    • (2015) IEEE Signal Process Mag , vol.32 , pp. 126-131
    • Minervini, M.1    Scharr, H.2    Tsaftaris, S.A.3
  • 11
    • 84940183064 scopus 로고    scopus 로고
    • Advanced phenotyping and phenotype data analysis for the study of plant growth and development
    • Rahaman MM, Chen D, Gillani Z, Klukas C, Chen M. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci. 2015;6:619. doi: 10.3389/fpls.2015.00619.
    • (2015) Front Plant Sci , vol.6 , pp. 619
    • Rahaman, M.M.1    Chen, D.2    Gillani, Z.3    Klukas, C.4    Chen, M.5
  • 12
    • 84928745882 scopus 로고    scopus 로고
    • Plant phenotyping: from bean weighing to image analysis
    • Walter A, Liebisch F, Hund A. Plant phenotyping: from bean weighing to image analysis. Plant Methods. 2015;11:14. doi: 10.1186/s13007-015-0056-8.
    • (2015) Plant Methods , vol.11 , pp. 14
    • Walter, A.1    Liebisch, F.2    Hund, A.3
  • 13
    • 84908530182 scopus 로고    scopus 로고
    • A review of imaging techniques for plant phenotyping
    • Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors. 2014;14:20078-111. doi: 10.3390/s141120078.
    • (2014) Sensors , vol.14 , pp. 20078-20111
    • Li, L.1    Zhang, Q.2    Huang, D.3
  • 14
    • 84944074770 scopus 로고    scopus 로고
    • Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand
    • Sankaran S, Khot LR, Carter AH. Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand. Comput Electron Agric. 2015;118:372-9. doi: 10.1016/j.compag.2015.09.001.
    • (2015) Comput Electron Agric , vol.118 , pp. 372-379
    • Sankaran, S.1    Khot, L.R.2    Carter, A.H.3
  • 15
    • 84976864009 scopus 로고    scopus 로고
    • High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis
    • Lootens P, Ruttink T, Rohde A, Combes D, Barre P, Roldán-Ruiz I. High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis. Plant Methods. 2016;12:32. doi: 10.1186/s13007-016-0132-8.
    • (2016) Plant Methods , vol.12 , pp. 32
    • Lootens, P.1    Ruttink, T.2    Rohde, A.3    Combes, D.4    Barre, P.5    Roldán-Ruiz, I.6
  • 16
    • 47049087271 scopus 로고    scopus 로고
    • Verification of color vegetation indices for automated crop imaging applications
    • Meyer GE, Neto JC. Verification of color vegetation indices for automated crop imaging applications. Comput Electron Agric. 2008;63:282-93. doi: 10.1016/j.compag.2008.03.009.
    • (2008) Comput Electron Agric , vol.63 , pp. 282-293
    • Meyer, G.E.1    Neto, J.C.2
  • 17
    • 84924561768 scopus 로고    scopus 로고
    • Image based phenotyping during winter: a powerful tool to assess wheat genetic variation in growth response to temperature
    • Grieder C, Hund A, Walter A. Image based phenotyping during winter: a powerful tool to assess wheat genetic variation in growth response to temperature. Funct Plant Biol. 2015;42:387-96.
    • (2015) Funct Plant Biol , vol.42 , pp. 387-396
    • Grieder, C.1    Hund, A.2    Walter, A.3
  • 18
    • 84928266341 scopus 로고    scopus 로고
    • Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach
    • Liebisch F, Kirchgessner N, Schneider D, Walter A, Hund A. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods. 2015;11:9. doi: 10.1186/s13007-015-0048-8.
    • (2015) Plant Methods , vol.11 , pp. 9
    • Liebisch, F.1    Kirchgessner, N.2    Schneider, D.3    Walter, A.4    Hund, A.5
  • 19
    • 84890473686 scopus 로고    scopus 로고
    • An automatic detection method to the field wheat based on image processing
    • 89180F
    • Wang Y, Cao Z, Bai X, Yu Z, Li Y. An automatic detection method to the field wheat based on image processing. Proc SPIE. 2013. 89180F. doi: 10.1117/12.2031139.
    • (2013) Proc SPIE
    • Wang, Y.1    Cao, Z.2    Bai, X.3    Yu, Z.4    Li, Y.5
  • 20
    • 84958049448 scopus 로고    scopus 로고
    • Machine learning for high-throughput stress phenotyping in plants
    • Singh A, Ganapathysubramanian B, Singh AK, Sarkar S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016;21:110-24. doi: 10.1016/j.tplants.2015.10.015.
    • (2016) Trends Plant Sci , vol.21 , pp. 110-124
    • Singh, A.1    Ganapathysubramanian, B.2    Singh, A.K.3    Sarkar, S.4
  • 21
    • 84965017167 scopus 로고    scopus 로고
    • Machine learning and computer vision system for phenotype data acquisition and analysis in plants
    • Navarro PJ, Pérez F, Weiss J, Egea-Cortines M. Machine learning and computer vision system for phenotype data acquisition and analysis in plants. Sensors. 2016;16:641. doi: 10.3390/s16050641.
    • (2016) Sensors. , vol.16 , pp. 641
    • Navarro, P.J.1    Pérez, F.2    Weiss, J.3    Egea-Cortines, M.4
  • 22
    • 84878353036 scopus 로고    scopus 로고
    • Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model
    • Guo W, Rage UK, Ninomiya S. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput Electron Agric. 2013;96:58-66. doi: 10.1016/j.compag.2013.04.010.
    • (2013) Comput Electron Agric , vol.96 , pp. 58-66
    • Guo, W.1    Rage, U.K.2    Ninomiya, S.3
  • 23
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu Nobuyuki. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62-6. doi: 10.1109/TSMC.1979.4310076.
    • (1979) IEEE Trans Syst Man Cybern , vol.9 , pp. 62-66
    • Otsu, N.1
  • 24
    • 85016112476 scopus 로고    scopus 로고
    • Accessed 8 Jun 2016.
    • LDP LLC. Remote sensing NDVI. http://www.maxmax.com/maincamerapage/remote-sensing. Accessed 8 Jun 2016.
    • Remote sensing NDVI
  • 25
    • 84982590903 scopus 로고
    • The development of the CIE 1976 (L*a*b*) uniform colour space and colour-difference formula
    • McLAREN K. The development of the CIE 1976 (L*a*b*) uniform colour space and colour-difference formula. J Soc Dye Colour. 1976;92:338-41. doi: 10.1111/j.1478-4408.1976.tb03301.x.
    • (1976) J Soc Dye Colour , vol.92 , pp. 338-341
    • McLaren, K.1
  • 28
    • 33947418028 scopus 로고    scopus 로고
    • Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species
    • Walter A, Scharr H, Gilmer F, Zierer R, Nagel KA, Ernst M, et al. Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytol. 2007;174:447-55. doi: 10.1111/j.1469-8137.2007.02002.x.
    • (2007) New Phytol , vol.174 , pp. 447-455
    • Walter, A.1    Scharr, H.2    Gilmer, F.3    Zierer, R.4    Nagel, K.A.5    Ernst, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.