-
1
-
-
83055180602
-
Phenomics-technologies to relieve the phenotyping bottleneck
-
Furbank RT, Tester M. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16:635-44. doi: 10.1016/j.tplants.2011.09.005.
-
(2011)
Trends Plant Sci
, vol.16
, pp. 635-644
-
-
Furbank, R.T.1
Tester, M.2
-
2
-
-
84860329380
-
Field-based phenomics for plant genetics research
-
White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, et al. Field-based phenomics for plant genetics research. Field Crops Res. 2012;133:101-12. doi: 10.1016/j.fcr.2012.04.003.
-
(2012)
Field Crops Res
, vol.133
, pp. 101-112
-
-
White, J.W.1
Andrade-Sanchez, P.2
Gore, M.A.3
Bronson, K.F.4
Coffelt, T.A.5
Conley, M.M.6
-
3
-
-
84976415436
-
Special issue on computer vision and image analysis in plant phenotyping
-
Scharr H, Dee H, French AP, Tsaftaris SA. Special issue on computer vision and image analysis in plant phenotyping. Mach Vis Appl. 2016;27:607-9. doi: 10.1007/s00138-016-0787-1.
-
(2016)
Mach Vis Appl
, vol.27
, pp. 607-609
-
-
Scharr, H.1
Dee, H.2
French, A.P.3
Tsaftaris, S.A.4
-
4
-
-
84951966535
-
An opinion on imaging challenges in phenotyping field crops
-
Kelly D, Vatsa A, Mayham W, Ngô L, Thompson A, Kazic T. An opinion on imaging challenges in phenotyping field crops. Mach Vis Appl. 2016;27:681-94. doi: 10.1007/s00138-015-0728-4.
-
(2016)
Mach Vis Appl
, vol.27
, pp. 681-694
-
-
Kelly, D.1
Vatsa, A.2
Mayham, W.3
Ngô, L.4
Thompson, A.5
Kazic, T.6
-
5
-
-
85006277393
-
Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV
-
Duan T, Zheng B, Guo W, Ninomiya S, Guo Y, Chapman SC. Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV. Funct Plant Biol. 2017;44:169-83. doi: 10.1071/FP16123.
-
(2017)
Funct Plant Biol
, vol.44
, pp. 169-183
-
-
Duan, T.1
Zheng, B.2
Guo, W.3
Ninomiya, S.4
Guo, Y.5
Chapman, S.C.6
-
6
-
-
84927937235
-
From image processing to computer vision: plant imaging grows up
-
Dee H, French A. From image processing to computer vision: plant imaging grows up. Funct Plant Biol. 2015;42:3-5.
-
(2015)
Funct Plant Biol.
, vol.42
, pp. 3-5
-
-
Dee, H.1
French, A.2
-
8
-
-
85006255885
-
The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system
-
Kirchgessner N, Liebisch F, Yu K, Pfeifer J, Friedli M, Hund A, et al. The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Funct Plant Biol. 2017;44:154-68. doi: 10.1071/FP16165.
-
(2017)
Funct Plant Biol
, vol.44
, pp. 154-168
-
-
Kirchgessner, N.1
Liebisch, F.2
Yu, K.3
Pfeifer, J.4
Friedli, M.5
Hund, A.6
-
9
-
-
84908509157
-
Proximal remote sensing buggies and potential applications for field-based phenotyping
-
Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy. 2014;4:349-79. doi: 10.3390/agronomy4030349.
-
(2014)
Agronomy
, vol.4
, pp. 349-379
-
-
Deery, D.1
Jimenez-Berni, J.2
Jones, H.3
Sirault, X.4
Furbank, R.5
-
10
-
-
85032751744
-
Image analysis: the new bottleneck in plant phenotyping
-
Minervini M, Scharr H, Tsaftaris SA. Image analysis: the new bottleneck in plant phenotyping. IEEE Signal Process Mag. 2015;32:126-31. doi: 10.1109/MSP.2015.2405111.
-
(2015)
IEEE Signal Process Mag
, vol.32
, pp. 126-131
-
-
Minervini, M.1
Scharr, H.2
Tsaftaris, S.A.3
-
11
-
-
84940183064
-
Advanced phenotyping and phenotype data analysis for the study of plant growth and development
-
Rahaman MM, Chen D, Gillani Z, Klukas C, Chen M. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci. 2015;6:619. doi: 10.3389/fpls.2015.00619.
-
(2015)
Front Plant Sci
, vol.6
, pp. 619
-
-
Rahaman, M.M.1
Chen, D.2
Gillani, Z.3
Klukas, C.4
Chen, M.5
-
12
-
-
84928745882
-
Plant phenotyping: from bean weighing to image analysis
-
Walter A, Liebisch F, Hund A. Plant phenotyping: from bean weighing to image analysis. Plant Methods. 2015;11:14. doi: 10.1186/s13007-015-0056-8.
-
(2015)
Plant Methods
, vol.11
, pp. 14
-
-
Walter, A.1
Liebisch, F.2
Hund, A.3
-
13
-
-
84908530182
-
A review of imaging techniques for plant phenotyping
-
Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors. 2014;14:20078-111. doi: 10.3390/s141120078.
-
(2014)
Sensors
, vol.14
, pp. 20078-20111
-
-
Li, L.1
Zhang, Q.2
Huang, D.3
-
14
-
-
84944074770
-
Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand
-
Sankaran S, Khot LR, Carter AH. Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand. Comput Electron Agric. 2015;118:372-9. doi: 10.1016/j.compag.2015.09.001.
-
(2015)
Comput Electron Agric
, vol.118
, pp. 372-379
-
-
Sankaran, S.1
Khot, L.R.2
Carter, A.H.3
-
15
-
-
84976864009
-
High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis
-
Lootens P, Ruttink T, Rohde A, Combes D, Barre P, Roldán-Ruiz I. High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis. Plant Methods. 2016;12:32. doi: 10.1186/s13007-016-0132-8.
-
(2016)
Plant Methods
, vol.12
, pp. 32
-
-
Lootens, P.1
Ruttink, T.2
Rohde, A.3
Combes, D.4
Barre, P.5
Roldán-Ruiz, I.6
-
16
-
-
47049087271
-
Verification of color vegetation indices for automated crop imaging applications
-
Meyer GE, Neto JC. Verification of color vegetation indices for automated crop imaging applications. Comput Electron Agric. 2008;63:282-93. doi: 10.1016/j.compag.2008.03.009.
-
(2008)
Comput Electron Agric
, vol.63
, pp. 282-293
-
-
Meyer, G.E.1
Neto, J.C.2
-
17
-
-
84924561768
-
Image based phenotyping during winter: a powerful tool to assess wheat genetic variation in growth response to temperature
-
Grieder C, Hund A, Walter A. Image based phenotyping during winter: a powerful tool to assess wheat genetic variation in growth response to temperature. Funct Plant Biol. 2015;42:387-96.
-
(2015)
Funct Plant Biol
, vol.42
, pp. 387-396
-
-
Grieder, C.1
Hund, A.2
Walter, A.3
-
18
-
-
84928266341
-
Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach
-
Liebisch F, Kirchgessner N, Schneider D, Walter A, Hund A. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods. 2015;11:9. doi: 10.1186/s13007-015-0048-8.
-
(2015)
Plant Methods
, vol.11
, pp. 9
-
-
Liebisch, F.1
Kirchgessner, N.2
Schneider, D.3
Walter, A.4
Hund, A.5
-
19
-
-
84890473686
-
An automatic detection method to the field wheat based on image processing
-
89180F
-
Wang Y, Cao Z, Bai X, Yu Z, Li Y. An automatic detection method to the field wheat based on image processing. Proc SPIE. 2013. 89180F. doi: 10.1117/12.2031139.
-
(2013)
Proc SPIE
-
-
Wang, Y.1
Cao, Z.2
Bai, X.3
Yu, Z.4
Li, Y.5
-
20
-
-
84958049448
-
Machine learning for high-throughput stress phenotyping in plants
-
Singh A, Ganapathysubramanian B, Singh AK, Sarkar S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016;21:110-24. doi: 10.1016/j.tplants.2015.10.015.
-
(2016)
Trends Plant Sci
, vol.21
, pp. 110-124
-
-
Singh, A.1
Ganapathysubramanian, B.2
Singh, A.K.3
Sarkar, S.4
-
21
-
-
84965017167
-
Machine learning and computer vision system for phenotype data acquisition and analysis in plants
-
Navarro PJ, Pérez F, Weiss J, Egea-Cortines M. Machine learning and computer vision system for phenotype data acquisition and analysis in plants. Sensors. 2016;16:641. doi: 10.3390/s16050641.
-
(2016)
Sensors.
, vol.16
, pp. 641
-
-
Navarro, P.J.1
Pérez, F.2
Weiss, J.3
Egea-Cortines, M.4
-
22
-
-
84878353036
-
Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model
-
Guo W, Rage UK, Ninomiya S. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput Electron Agric. 2013;96:58-66. doi: 10.1016/j.compag.2013.04.010.
-
(2013)
Comput Electron Agric
, vol.96
, pp. 58-66
-
-
Guo, W.1
Rage, U.K.2
Ninomiya, S.3
-
23
-
-
0018306059
-
A threshold selection method from gray-level histograms
-
Otsu Nobuyuki. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62-6. doi: 10.1109/TSMC.1979.4310076.
-
(1979)
IEEE Trans Syst Man Cybern
, vol.9
, pp. 62-66
-
-
Otsu, N.1
-
24
-
-
85016112476
-
-
Accessed 8 Jun 2016.
-
LDP LLC. Remote sensing NDVI. http://www.maxmax.com/maincamerapage/remote-sensing. Accessed 8 Jun 2016.
-
Remote sensing NDVI
-
-
-
25
-
-
84982590903
-
The development of the CIE 1976 (L*a*b*) uniform colour space and colour-difference formula
-
McLAREN K. The development of the CIE 1976 (L*a*b*) uniform colour space and colour-difference formula. J Soc Dye Colour. 1976;92:338-41. doi: 10.1111/j.1478-4408.1976.tb03301.x.
-
(1976)
J Soc Dye Colour
, vol.92
, pp. 338-341
-
-
McLaren, K.1
-
28
-
-
33947418028
-
Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species
-
Walter A, Scharr H, Gilmer F, Zierer R, Nagel KA, Ernst M, et al. Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytol. 2007;174:447-55. doi: 10.1111/j.1469-8137.2007.02002.x.
-
(2007)
New Phytol
, vol.174
, pp. 447-455
-
-
Walter, A.1
Scharr, H.2
Gilmer, F.3
Zierer, R.4
Nagel, K.A.5
Ernst, M.6
-
29
-
-
84949637673
-
Leaf segmentation in plant phenotyping: a collation study
-
Scharr H, Minervini M, French AP, Klukas C, Kramer DM, Liu X, et al. Leaf segmentation in plant phenotyping: a collation study. Mach Vis Appl. 2015;27:585-606. doi: 10.1007/s00138-015-0737-3.
-
(2015)
Mach Vis Appl
, vol.27
, pp. 585-606
-
-
Scharr, H.1
Minervini, M.2
French, A.P.3
Klukas, C.4
Kramer, D.M.5
Liu, X.6
|