메뉴 건너뛰기




Volumn 16, Issue 5, 2016, Pages

Machine learning and computer vision system for phenotype data acquisition and analysis in plants

Author keywords

Circadian clock; Computer vision; Data normalisation; Image segmentation; Machine learning

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; CLASSIFIERS; COMPUTER VISION; DATA ACQUISITION; DATA HANDLING; IMAGE ACQUISITION; IMAGE SEGMENTATION; INFORMATION ANALYSIS; INFRARED DEVICES; LEARNING SYSTEMS; NEAREST NEIGHBOR SEARCH; SUPPORT VECTOR MACHINES;

EID: 84965017167     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s16050641     Document Type: Article
Times cited : (36)

References (41)
  • 1
    • 84923536786 scopus 로고    scopus 로고
    • Lights, camera, action: High-throughput plant phenotyping is ready for a close-up
    • [CrossRef] [PubMed]
    • Fahlgren, N.; Gehan, M.; Baxter, I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24, 93-99. [CrossRef] [PubMed]
    • (2015) Curr. Opin. Plant Biol , vol.24 , pp. 93-99
    • Fahlgren, N.1    Gehan, M.2    Baxter, I.3
  • 3
    • 84927937235 scopus 로고    scopus 로고
    • From image processing to computer vision: Plant imaging grows up
    • [CrossRef]
    • Dee, H.; French, A. From image processing to computer vision: Plant imaging grows up. Funct. Plant Biol. 2015, 42, 3-5. [CrossRef]
    • (2015) Funct. Plant Biol , vol.42 , pp. 3-5
    • Dee, H.1    French, A.2
  • 4
    • 83055180602 scopus 로고    scopus 로고
    • Phenomics—Technologies to relieve the phenotyping bottleneck
    • [CrossRef] [PubMed]
    • Furbank, R.T.; Tester, M. Phenomics—Technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635-644. [CrossRef] [PubMed]
    • (2011) Trends Plant Sci , vol.16 , pp. 635-644
    • Furbank, R.T.1    Tester, M.2
  • 5
    • 84893401756 scopus 로고    scopus 로고
    • Cell to whole-plant phenotyping: The best is yet to come
    • [CrossRef] [PubMed]
    • Dhondt, S.; Wuyts, N.; Inzé, D. Cell to whole-plant phenotyping: The best is yet to come. Trends Plant Sci. 2013, 18, 428-439. [CrossRef] [PubMed]
    • (2013) Trends Plant Sci , vol.18 , pp. 428-439
    • Dhondt, S.1    Wuyts, N.2    Inzé, D.3
  • 7
    • 84908530182 scopus 로고    scopus 로고
    • A review of imaging techniques for plant phenotyping
    • [CrossRef] [PubMed]
    • Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078-20111. [CrossRef] [PubMed]
    • (2014) Sensors , vol.14 , pp. 20078-20111
    • Li, L.1    Zhang, Q.2    Huang, D.3
  • 8
    • 84901284679 scopus 로고    scopus 로고
    • High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines
    • [CrossRef] [PubMed]
    • Honsdorf, N.; March, T.J.; Berger, B.; Tester, M.; Pillen, K. High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 2014, 9, 1-13. [CrossRef] [PubMed]
    • (2014) Plos ONE , vol.9 , pp. 1-13
    • Honsdorf, N.1    March, T.J.2    Berger, B.3    Tester, M.4    Pillen, K.5
  • 9
    • 0030826881 scopus 로고    scopus 로고
    • Measuring 3-D plant growth using optical flow
    • [CrossRef]
    • Barron, J.; Liptay, A. Measuring 3-D plant growth using optical flow. Bioimaging 1997, 5, 82-86. [CrossRef]
    • (1997) Bioimaging , vol.5 , pp. 82-86
    • Barron, J.1    Liptay, A.2
  • 10
    • 13844256410 scopus 로고    scopus 로고
    • Plant growth measurement techniques using near-infrared imagery
    • [CrossRef]
    • Aboelela, A.; Liptay, A.; Barron, J.L. Plant growth measurement techniques using near-infrared imagery. Int. J. Robot. Autom. 2005, 20, 42-49. [CrossRef]
    • (2005) Int. J. Robot. Autom , vol.20 , pp. 42-49
    • Aboelela, A.1    Liptay, A.2    Barron, J.L.3
  • 11
    • 84870545640 scopus 로고    scopus 로고
    • Development of a configurable growth chamber with a computer vision system to study circadian rhythm in plants
    • [CrossRef] [PubMed]
    • Navarro, P.J.; Fernández, C.; Weiss, J.; Egea-Cortines, M. Development of a configurable growth chamber with a computer vision system to study circadian rhythm in plants. Sensors 2012, 12, 15356-15375. [CrossRef] [PubMed]
    • (2012) Sensors , vol.12 , pp. 15356-15375
    • Navarro, P.J.1    Fernández, C.2    Weiss, J.3    Egea-Cortines, M.4
  • 12
    • 84938411714 scopus 로고    scopus 로고
    • Structured light-based 3d reconstruction system for plants
    • [CrossRef] [PubMed]
    • Nguyen, T.; Slaughter, D.; Max, N.; Maloof, J.; Sinha, N. Structured light-based 3d reconstruction system for plants. Sensors 2015, 15, 18587-18612. [CrossRef] [PubMed]
    • (2015) Sensors , vol.15 , pp. 18587-18612
    • Nguyen, T.1    Slaughter, D.2    Max, N.3    Maloof, J.4    Sinha, N.5
  • 13
    • 84873705057 scopus 로고    scopus 로고
    • Image analysis is driving a renaissance in growth measurement
    • [CrossRef] [PubMed]
    • Spalding, E.P.; Miller, N.D. Image analysis is driving a renaissance in growth measurement. Curr. Opin. Plant Biol. 2013, 16, 100-104. [CrossRef] [PubMed]
    • (2013) Curr. Opin. Plant Biol , vol.16 , pp. 100-104
    • Spalding, E.P.1    Miller, N.D.2
  • 14
    • 80855128255 scopus 로고    scopus 로고
    • Algorithms in nature: The convergence of systems biology and computational thinking
    • [CrossRef] [PubMed]
    • Navlakha, S.; Bar-Joseph, Z. Algorithms in nature: The convergence of systems biology and computational thinking. Mol. Syst. Biol. 2011, 7. [CrossRef] [PubMed]
    • (2011) Mol. Syst. Biol
    • Navlakha, S.1    Bar-Joseph, Z.2
  • 15
    • 70350023532 scopus 로고    scopus 로고
    • Improved base calling for the Illumina Genome Analyzer using machine learning strategies
    • [CrossRef] [PubMed]
    • Kircher, M.; Stenzel, U.; Kelso, J. Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol. 2009, 10, 1-9. [CrossRef] [PubMed]
    • (2009) Genome Biol , vol.10 , pp. 1-9
    • Kircher, M.1    Stenzel, U.2    Kelso, J.3
  • 16
    • 0030624540 scopus 로고    scopus 로고
    • Better prediction of protein cellular localization sites with the k nearest neighbors classifier
    • [PubMed]
    • Horton, P.; Nakai, K. Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1997, 5, 147-152. [PubMed]
    • (1997) Proc. Int. Conf. Intell. Syst. Mol. Biol , vol.5 , pp. 147-152
    • Horton, P.1    Nakai, K.2
  • 17
    • 33745594057 scopus 로고    scopus 로고
    • Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier
    • [CrossRef] [PubMed]
    • Yousef, M.; Nebozhyn, M.; Shatkay, H.; Kanterakis, S.; Showe, L.C.; Showe, M.K. Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 2006, 22, 1325-1334. [CrossRef] [PubMed]
    • (2006) Bioinformatics , vol.22 , pp. 1325-1334
    • Yousef, M.1    Nebozhyn, M.2    Shatkay, H.3    Kanterakis, S.4    Showe, L.C.5    Showe, M.K.6
  • 18
    • 77957894745 scopus 로고    scopus 로고
    • A computer vision approach for weeds identification through Support Vector Machines
    • [CrossRef]
    • Tellaeche, A.; Pajares, G.; Burgos-Artizzu, X.P.; Ribeiro, A. A computer vision approach for weeds identification through Support Vector Machines. Appl. Soft Comput. J. 2011, 11, 908-915. [CrossRef]
    • (2011) Appl. Soft Comput. J , vol.11 , pp. 908-915
    • Tellaeche, A.1    Pajares, G.2    Burgos-Artizzu, X.P.3    Ribeiro, A.4
  • 19
    • 84861191044 scopus 로고    scopus 로고
    • Support Vector Machines for crop/weeds identification in maize fields
    • [CrossRef]
    • Guerrero, J.M.; Pajares, G.; Montalvo, M.; Romeo, J.; Guijarro, M. Support Vector Machines for crop/weeds identification in maize fields. Expert Syst. Appl. 2012, 39, 11149-11155. [CrossRef]
    • (2012) Expert Syst. Appl , vol.39 , pp. 11149-11155
    • Guerrero, J.M.1    Pajares, G.2    Montalvo, M.3    Romeo, J.4    Guijarro, M.5
  • 20
    • 34548206704 scopus 로고    scopus 로고
    • The circadian clock regulates auxin signaling and responses in Arabidopsis
    • [CrossRef] [PubMed]
    • Covington, M.F.; Harmer, S.L. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol. 2007, 5, 1773-1784. [CrossRef] [PubMed]
    • (2007) Plos Biol , vol.5 , pp. 1773-1784
    • Covington, M.F.1    Harmer, S.L.2
  • 22
    • 77953911604 scopus 로고    scopus 로고
    • Plant development goes like clockwork
    • [CrossRef] [PubMed]
    • De Montaigu, A.; Toth, R.; Coupland, G. Plant development goes like clockwork. Trends Genet. 2010, 26, 296-306. [CrossRef] [PubMed]
    • (2010) Trends Genet , vol.26 , pp. 296-306
    • De Montaigu, A.1    Toth, R.2    Coupland, G.3
  • 25
    • 0346422328 scopus 로고    scopus 로고
    • EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation
    • [CrossRef] [PubMed]
    • Khanna, R.; Kikis, E.A.; Quail, P.H. EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Physiol. 2003, 133, 1530-1538. [CrossRef] [PubMed]
    • (2003) Plant Physiol , vol.133 , pp. 1530-1538
    • Khanna, R.1    Kikis, E.A.2    Quail, P.H.3
  • 27
    • 34447520296 scopus 로고    scopus 로고
    • Rhythmic growth explained by coincidence between internal and external cues
    • [CrossRef] [PubMed]
    • Nozue, K.; Covington, M.F.; Duek, P.D.; Lorrain, S.; Fankhauser, C.; Harmer, S.L.; Maloof, J.N. Rhythmic growth explained by coincidence between internal and external cues. Nature 2007, 448, 358-363. [CrossRef] [PubMed]
    • (2007) Nature , vol.448 , pp. 358-363
    • Nozue, K.1    Covington, M.F.2    Duek, P.D.3    Lorrain, S.4    Fankhauser, C.5    Harmer, S.L.6    Maloof, J.N.7
  • 29
    • 0029288406 scopus 로고
    • Statistical geometrical features for texture classification
    • [CrossRef]
    • Chen, Y.Q.; Nixon, M.S.; Thomas, D.W. Statistical geometrical features for texture classification. Pattern Recognit. 1995, 28, 537-552. [CrossRef]
    • (1995) Pattern Recognit , vol.28 , pp. 537-552
    • Chen, Y.Q.1    Nixon, M.S.2    Thomas, D.W.3
  • 31
    • 0019229279 scopus 로고
    • Finding structure in co-occurrence matrices for texture analysis
    • [CrossRef]
    • Zucker, S.W.; Terzopoulos, D. Finding structure in co-occurrence matrices for texture analysis. Comput. Graph. Image Process. 1980, 12, 286-308. [CrossRef]
    • (1980) Comput. Graph. Image Process , vol.12 , pp. 286-308
    • Zucker, S.W.1    Terzopoulos, D.2
  • 33
    • 84962193048 scopus 로고    scopus 로고
    • Automatic detection of microaneurysms in diabetic retinopathy fundus images using the L*a*b color space
    • [CrossRef] [PubMed]
    • Navarro, P.J.; Alonso, D.; Stathis, K. Automatic detection of microaneurysms in diabetic retinopathy fundus images using the L*a*b color space. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2016, 33, 74-83. [CrossRef] [PubMed]
    • (2016) J. Opt. Soc. Am. A Opt. Image Sci. Vis , vol.33 , pp. 74-83
    • Navarro, P.J.1    Alonso, D.2    Stathis, K.3
  • 34
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • [CrossRef]
    • Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674-693. [CrossRef]
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 36
    • 0037410696 scopus 로고    scopus 로고
    • Texture classification using wavelet transform
    • [CrossRef]
    • Arivazhagan, S.; Ganesan, L. Texture classification using wavelet transform. Pattern Recognit. Lett. 2003, 24, 1513-1521. [CrossRef]
    • (2003) Pattern Recognit. Lett , vol.24 , pp. 1513-1521
    • Arivazhagan, S.1    Ganesan, L.2
  • 37
    • 84965043593 scopus 로고    scopus 로고
    • Machine Learning with R; Packt Publishing Ltd.: Birmingham, UK
    • Lantz, B. Machine Learning with R; Packt Publishing Ltd.: Birmingham, UK, 2013.
    • (2013)
    • Lantz, B.1
  • 38
    • 84863165439 scopus 로고    scopus 로고
    • The elements of statistical learning
    • Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning. Elements 2009, 1, 337-387.
    • (2009) Elements , vol.1 , pp. 337-387
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 39
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • [CrossRef]
    • Bradley, A. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145-1159. [CrossRef]
    • (1997) Pattern Recognit , vol.30 , pp. 1145-1159
    • Bradley, A.1
  • 40
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • [CrossRef]
    • Hand, D.J. Measuring classifier performance: A coherent alternative to the area under the ROC curve. Mach. Learn. 2009, 77, 103-123. [CrossRef]
    • (2009) Mach. Learn , vol.77 , pp. 103-123
    • Hand, D.J.1
  • 41
    • 1842422015 scopus 로고    scopus 로고
    • Survey over image thresholding techniques and quantitative performance evaluation
    • Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146-168.
    • (2004) J. Electron. Imaging , vol.13 , pp. 146-168
    • Sezgin, M.1    Sankur, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.