메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Air quality forecasting using neural networks

Author keywords

[No Author keywords available]

Indexed keywords

AIR QUALITY; ARTIFICIAL INTELLIGENCE; DATA FUSION; FORECASTING; LEARNING SYSTEMS; METEOROLOGY;

EID: 85016050199     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SSCI.2016.7850128     Document Type: Conference Paper
Times cited : (13)

References (17)
  • 3
    • 84923017379 scopus 로고    scopus 로고
    • Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation
    • X. Feng, Q. Li, Y. Zhu, J. Hou, L. Jin, and J. Wang. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment, 107:118-128, 2015.
    • (2015) Atmospheric Environment , vol.107 , pp. 118-128
    • Feng, X.1    Li, Q.2    Zhu, Y.3    Hou, J.4    Jin, L.5    Wang, J.6
  • 4
    • 0033081112 scopus 로고    scopus 로고
    • Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London
    • M. W. Gardner and S. R. Dorling. Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33(5):709-719, 1999.
    • (1999) Atmospheric Environment , vol.33 , Issue.5 , pp. 709-719
    • Gardner, M.W.1    Dorling, S.R.2
  • 6
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: A review
    • 1
    • G. Huang, G.-B. Huang, S. Song, and K. You. Trends in extreme learning machines: A review. Neural Networks, 61:32-48, 1 2015.
    • (2015) Neural Networks , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.-B.2    Song, S.3    You, K.4
  • 7
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • 12
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: Theory and applications. Neurocomputing, 70(1-3):489-501, 12 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 8
    • 0034739912 scopus 로고    scopus 로고
    • Neural networks and periodic components used in air quality forecasting
    • M. Kolehmainen, H. Martikainen, and J. Ruuskanen. Neural networks and periodic components used in air quality forecasting. Atmospheric Environment, 35(5):815-825, 2001.
    • (2001) Atmospheric Environment , vol.35 , Issue.5 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 10
    • 85016028887 scopus 로고    scopus 로고
    • NOAA's National Centers for Environmental Information (NCEI). Hourly/Sub-Hourly Observational Data
    • NOAA's National Centers for Environmental Information (NCEI). Hourly/Sub-Hourly Observational Data, http://www.ncdc.noaa.gov/.
  • 11
    • 0347086147 scopus 로고    scopus 로고
    • Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease
    • C. A. Pope, R. T. Burnett, G. D. Thurston, M. J. Thun, E. E. Calle, and D. Krewski. Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution: Epidemiological Evidence of General Pathophysiological Pathways of Disease. Circulation, 109(1):71-77, 2003.
    • (2003) Circulation , vol.109 , Issue.1 , pp. 71-77
    • Pope, C.A.1    Burnett, R.T.2    Thurston, G.D.3    Thun, M.J.4    Calle, E.E.5    Krewski, D.6
  • 14
    • 80051584618 scopus 로고    scopus 로고
    • GPU-accelerated and parallelized ELM ensembles for large-scale regression
    • 9
    • M. van Heeswijk, Y. Miche, E. Oja, and A. Lendasse. GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing, 74(16):2430-2437, 9 2011.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2430-2437
    • Van Heeswijk, M.1    Miche, Y.2    Oja, E.3    Lendasse, A.4
  • 15
    • 84893691788 scopus 로고    scopus 로고
    • Predicting minority class for suspended particulate matters level by extreme learning machine
    • 3
    • C.-M. Vong, W.-F. Ip, P.-K. Wong, and C.-C. Chiu. Predicting minority class for suspended particulate matters level by extreme learning machine. Neurocomputing, 128:136-144, 3 2014.
    • (2014) Neurocomputing , vol.128 , pp. 136-144
    • Vong, C.-M.1    Ip, W.-F.2    Wong, P.-K.3    Chiu, C.-C.4
  • 16
    • 79851508856 scopus 로고    scopus 로고
    • Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki
    • D. Voukantsis, K. Karatzas, J. Kukkonen, T. Räsänen, A. Karppinen, and M. Kolehmainen. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. The Science of the total environment, 409(7):1266-1276, 2011.
    • (2011) The Science of the Total Environment , vol.409 , Issue.7 , pp. 1266-1276
    • Voukantsis, D.1    Karatzas, K.2    Kukkonen, J.3    Räsänen, T.4    Karppinen, A.5    Kolehmainen, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.