-
3
-
-
84923017379
-
Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation
-
X. Feng, Q. Li, Y. Zhu, J. Hou, L. Jin, and J. Wang. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment, 107:118-128, 2015.
-
(2015)
Atmospheric Environment
, vol.107
, pp. 118-128
-
-
Feng, X.1
Li, Q.2
Zhu, Y.3
Hou, J.4
Jin, L.5
Wang, J.6
-
4
-
-
0033081112
-
Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London
-
M. W. Gardner and S. R. Dorling. Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33(5):709-719, 1999.
-
(1999)
Atmospheric Environment
, vol.33
, Issue.5
, pp. 709-719
-
-
Gardner, M.W.1
Dorling, S.R.2
-
6
-
-
84908682236
-
Trends in extreme learning machines: A review
-
1
-
G. Huang, G.-B. Huang, S. Song, and K. You. Trends in extreme learning machines: A review. Neural Networks, 61:32-48, 1 2015.
-
(2015)
Neural Networks
, vol.61
, pp. 32-48
-
-
Huang, G.1
Huang, G.-B.2
Song, S.3
You, K.4
-
7
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
12
-
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: Theory and applications. Neurocomputing, 70(1-3):489-501, 12 2006.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
8
-
-
0034739912
-
Neural networks and periodic components used in air quality forecasting
-
M. Kolehmainen, H. Martikainen, and J. Ruuskanen. Neural networks and periodic components used in air quality forecasting. Atmospheric Environment, 35(5):815-825, 2001.
-
(2001)
Atmospheric Environment
, vol.35
, Issue.5
, pp. 815-825
-
-
Kolehmainen, M.1
Martikainen, H.2
Ruuskanen, J.3
-
10
-
-
85016028887
-
-
NOAA's National Centers for Environmental Information (NCEI). Hourly/Sub-Hourly Observational Data
-
NOAA's National Centers for Environmental Information (NCEI). Hourly/Sub-Hourly Observational Data, http://www.ncdc.noaa.gov/.
-
-
-
-
11
-
-
0347086147
-
Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease
-
C. A. Pope, R. T. Burnett, G. D. Thurston, M. J. Thun, E. E. Calle, and D. Krewski. Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution: Epidemiological Evidence of General Pathophysiological Pathways of Disease. Circulation, 109(1):71-77, 2003.
-
(2003)
Circulation
, vol.109
, Issue.1
, pp. 71-77
-
-
Pope, C.A.1
Burnett, R.T.2
Thurston, G.D.3
Thun, M.J.4
Calle, E.E.5
Krewski, D.6
-
12
-
-
13544249965
-
Ozone air pollution is associated with acute myocardial infarction
-
J. B. Ruidavets, M. Cournot, S. Cassadou, M. Giroux, M. Meybeck, and J. Ferrieres. Ozone air pollution is associated with acute myocardial infarction. Circulation, 111(5):563-569, 2005.
-
(2005)
Circulation
, vol.111
, Issue.5
, pp. 563-569
-
-
Ruidavets, J.B.1
Cournot, M.2
Cassadou, S.3
Giroux, M.4
Meybeck, M.5
Ferrieres, J.6
-
14
-
-
80051584618
-
GPU-accelerated and parallelized ELM ensembles for large-scale regression
-
9
-
M. van Heeswijk, Y. Miche, E. Oja, and A. Lendasse. GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing, 74(16):2430-2437, 9 2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2430-2437
-
-
Van Heeswijk, M.1
Miche, Y.2
Oja, E.3
Lendasse, A.4
-
15
-
-
84893691788
-
Predicting minority class for suspended particulate matters level by extreme learning machine
-
3
-
C.-M. Vong, W.-F. Ip, P.-K. Wong, and C.-C. Chiu. Predicting minority class for suspended particulate matters level by extreme learning machine. Neurocomputing, 128:136-144, 3 2014.
-
(2014)
Neurocomputing
, vol.128
, pp. 136-144
-
-
Vong, C.-M.1
Ip, W.-F.2
Wong, P.-K.3
Chiu, C.-C.4
-
16
-
-
79851508856
-
Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki
-
D. Voukantsis, K. Karatzas, J. Kukkonen, T. Räsänen, A. Karppinen, and M. Kolehmainen. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. The Science of the total environment, 409(7):1266-1276, 2011.
-
(2011)
The Science of the Total Environment
, vol.409
, Issue.7
, pp. 1266-1276
-
-
Voukantsis, D.1
Karatzas, K.2
Kukkonen, J.3
Räsänen, T.4
Karppinen, A.5
Kolehmainen, M.6
|