메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 136-144

Predicting minority class for suspended particulate matters level by extreme learning machine

Author keywords

Extreme learning machine (ELM); Imbalance problem; Prior duplication; Support vector machine (SVM)

Indexed keywords

FORECASTING; KNOWLEDGE ACQUISITION; SUPPORT VECTOR MACHINES;

EID: 84893691788     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.11.056     Document Type: Article
Times cited : (54)

References (36)
  • 1
    • 31044433834 scopus 로고    scopus 로고
    • 10 hourly concentrations, in the Greater Area of Athens, Greece
    • 10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos. Environ. 2006, 40:1216-1229.
    • (2006) Atmos. Environ. , vol.40 , pp. 1216-1229
    • Grivas, G.1    Chaloulakou, A.2
  • 3
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • Comrie A.C. Comparing neural networks and regression models for ozone forecasting. J. Air. Waste Manage. Assoc. 1997, 47:653-663.
    • (1997) J. Air. Waste Manage. Assoc. , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 4
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)-A review of applications in the atmospheric sciences
    • Gardner M.W., Dorling S.R. Artificial neural networks (the multilayer perceptron)-A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32:2627-2636.
    • (1998) Atmos. Environ. , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 6
    • 0036708755 scopus 로고    scopus 로고
    • 10 concentrations 30h in advance in Santiago, Chile
    • 10 concentrations 30h in advance in Santiago, Chile. Atmos. Environ. 2002, 36:4555-4561.
    • (2002) Atmos. Environ. , vol.36 , pp. 4555-4561
    • Perez, P.1    Reyes, J.2
  • 7
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the support vector machine method in forecasting ambient air pollutant trends
    • Lu W.Z., Wang W.J. Potential assessment of the support vector machine method in forecasting ambient air pollutant trends. Chemosphere 2005, 59:693-701.
    • (2005) Chemosphere , vol.59 , pp. 693-701
    • Lu, W.Z.1    Wang, W.J.2
  • 8
    • 34250715899 scopus 로고    scopus 로고
    • Forecasting of the daily meteorological pollution using wavelets and support vector machine
    • Osowski S., Garanty K. Forecasting of the daily meteorological pollution using wavelets and support vector machine. Eng. Appl. Artif. Intell. 2007, 20:745-755.
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , pp. 745-755
    • Osowski, S.1    Garanty, K.2
  • 9
    • 41549103711 scopus 로고    scopus 로고
    • Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme
    • Lu W.-Z., Wang D. Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme. Sci. Total Environ. 2008, 395:109-116.
    • (2008) Sci. Total Environ. , vol.395 , pp. 109-116
    • Lu, W.-Z.1    Wang, D.2
  • 10
    • 53349162039 scopus 로고    scopus 로고
    • 2 concentrations by support vector machines and neural networks using principal component analysis
    • 2 concentrations by support vector machines and neural networks using principal component analysis. Simulation Modelling Pract. Theory 2008, 16:1488-1502.
    • (2008) Simulation Modelling Pract. Theory , vol.16 , pp. 1488-1502
    • Juhos, I.1    Makra, L.2    Tóth, B.3
  • 11
    • 84860401140 scopus 로고    scopus 로고
    • Effect of choice of kernel in support vector machines on ambient air pollution forecasting
    • Proceedings of the 2011 International Conference on System Science and Engineering, ICSSE
    • J.Y. Yang, W.F. Ip, C.M. Vong, and P.K. Wong, Effect of choice of kernel in support vector machines on ambient air pollution forecasting,in: Proceedings of the 2011 International Conference on System Science and Engineering, ICSSE, 2011, pp. 552-557.
    • (2011) , pp. 552-557
    • Yang, J.Y.1    Ip, W.F.2    Vong, C.M.3    Wong, P.K.4
  • 13
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 14
    • 35148882421 scopus 로고    scopus 로고
    • A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines
    • Sun Z.-L., Au K.-F., Choi T.-M. A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines. IEEE Trans. Syst., Man, Cybern., Part B: Cybern. 2007, 37:1321-1331.
    • (2007) IEEE Trans. Syst., Man, Cybern., Part B: Cybern. , vol.37 , pp. 1321-1331
    • Sun, Z.-L.1    Au, K.-F.2    Choi, T.-M.3
  • 15
    • 34547992213 scopus 로고    scopus 로고
    • Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
    • Zhang R., Huang G.-B., Sundararajan N., Saratchandran P. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinf. 2007, 4:485-495.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.4 , pp. 485-495
    • Zhang, R.1    Huang, G.-B.2    Sundararajan, N.3    Saratchandran, P.4
  • 16
    • 49249135950 scopus 로고    scopus 로고
    • Power utility nontechnical loss analysis with extreme learning machine method
    • Nizar A.H., Dong Z.Y., Wang Y. Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans. Power Syst. 2008, 23:946-955.
    • (2008) IEEE Trans. Power Syst. , vol.23 , pp. 946-955
    • Nizar, A.H.1    Dong, Z.Y.2    Wang, Y.3
  • 17
    • 77957870624 scopus 로고    scopus 로고
    • Performance enhancement of extreme learning machine for multi-category sparse data classification problems
    • Suresh S., Saraswathi S., Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Eng. Appl. Artif. Intell. 2010, 23:1149-1157.
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , pp. 1149-1157
    • Suresh, S.1    Saraswathi, S.2    Sundararajan, N.3
  • 18
    • 79951521183 scopus 로고    scopus 로고
    • Real-time transient stability assessment model using extreme learning machine
    • Xu Y., Dong Z.Y., Meng K., Zhang R., Wong K.P. Real-time transient stability assessment model using extreme learning machine. Gener., Transm. Distrib., IET 2011, 5:314-322.
    • (2011) Gener., Transm. Distrib., IET , vol.5 , pp. 314-322
    • Xu, Y.1    Dong, Z.Y.2    Meng, K.3    Zhang, R.4    Wong, K.P.5
  • 19
    • 84155165297 scopus 로고    scopus 로고
    • Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems
    • Savitha R., Suresh S., Sundararajan N. Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems. Inf. Sci. 2012, 187:277-290.
    • (2012) Inf. Sci. , vol.187 , pp. 277-290
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 21
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • Blagus R., Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinf. 2010, 11:523.
    • (2010) BMC Bioinf. , vol.11 , pp. 523
    • Blagus, R.1    Lusa, L.2
  • 22
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista G.E.A.P.A., Prati R.C., Monard M.C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 2004, 6:20-29.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 23
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • Estabrooks A., Jo T., Japkowicz N. A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 2004, 20:18-36.
    • (2004) Comput. Intell. , vol.20 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 25
    • 20844441675 scopus 로고    scopus 로고
    • KBA: kernel boundary alignment considering imbalanced data distribution
    • Wu G., Chang E.Y. KBA: kernel boundary alignment considering imbalanced data distribution. IEEE Trans. Knowl. Data Eng. 2005, 17:786-795.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 27
    • 67049152595 scopus 로고    scopus 로고
    • Boosting for learning multiple classes with imbalanced class distribution
    • Proceedings of the Sixth International Conference on Data Mining, ICDM'06
    • Y. Sun, M.S. Kamel, and Y. Wang, Boosting for learning multiple classes with imbalanced class distribution, in: Proceedings of the Sixth International Conference on Data Mining, ICDM'06, 2006, pp. 592-602.
    • (2006) , pp. 592-602
    • Sun, Y.1    Kamel, M.S.2    Wang, Y.3
  • 28
    • 33749240206 scopus 로고    scopus 로고
    • Multi-class pattern classification using neural networks
    • Ou G., Murphey Y.L. Multi-class pattern classification using neural networks. Pattern Recognition 2007, 40:4-18.
    • (2007) Pattern Recognition , vol.40 , pp. 4-18
    • Ou, G.1    Murphey, Y.L.2
  • 29
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett P.L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44:525-536.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 30
    • 84893671489 scopus 로고    scopus 로고
    • SMG. E-publication Download Page, available from: (Last accessed: 09.05.12).
    • SMG. E-publication Download Page, available from: http://www.smg.gov.mo/www/ccaa/pdf/e_pdf_download.php (Last accessed: 09.05.12).
  • 31
    • 84893689815 scopus 로고    scopus 로고
    • MATLAB Codes of ELM Algorithm, available from: (Last accessed: 22.03.12)
    • G.-B. Huang, MATLAB Codes of ELM Algorithm, available from: (Last accessed: 22.03.12). http://www.ntu.edu.sg/home/egbhuang/ELM_Codes.htm.
    • Huang, G.-B.1
  • 32
    • 84972537246 scopus 로고
    • Francis Galton's account of the invention of correlation
    • Stigler S.M. Francis Galton's account of the invention of correlation. Stat. Sci. 1989, 4:73-79.
    • (1989) Stat. Sci. , vol.4 , pp. 73-79
    • Stigler, S.M.1
  • 33
    • 84893643417 scopus 로고    scopus 로고
    • SMG, Air Quality Index Bulletin, available from: (Last accessed: 09.05.12).
    • SMG, Air Quality Index Bulletin, available from: (Last accessed: 09.05.12). http://www.smg.gov.mo/www/ccaa/iqa/fe_iqa.htm.
  • 34
    • 84865560594 scopus 로고    scopus 로고
    • LIBSVM: A Library For Support Vector Machines
    • available from: (Last access: 21.03.12).
    • C.-C. Chang, C.-J. Lin, LIBSVM: A Library For Support Vector Machines, available from: (Last access: 21.03.12). http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • Chang, C.-C.1    Lin, C.-J.2
  • 35
    • 3843050541 scopus 로고    scopus 로고
    • A Study on Sigmoid Kernels for SVM and the Training of non-PSD Kernels by SMO-type Methods
    • H.-T. Lin, C.-J. Lin, "A Study on Sigmoid Kernels for SVM and the Training of non-PSD Kernels by SMO-type Methods," 2003.
    • (2003)
    • Lin, H.-T.1    Lin, C.-J.2
  • 36
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.-W., Lin C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.