메뉴 건너뛰기




Volumn 7, Issue , 2017, Pages

Huntington's disease blood and brain show a common gene expression pattern and share an immune signature with Alzheimer's disease

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER; TRANSCRIPTOME;

EID: 85015910297     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep44849     Document Type: Article
Times cited : (39)

References (77)
  • 1
    • 84884594132 scopus 로고    scopus 로고
    • Prevalence of adult Huntington's disease in the UK based on diagnoses recorded in general practice records
    • Evans, S. J., et al. Prevalence of adult Huntington's disease in the UK based on diagnoses recorded in general practice records. Journal of neurology, neurosurgery, psychiatry 84, 1156-1160, doi: 10. 1136/jnnp-2012-304636 (2013).
    • (2013) Journal of Neurology, Neurosurgery, Psychiatry , vol.84 , pp. 1156-1160
    • Evans, S.J.1
  • 3
    • 84898017417 scopus 로고    scopus 로고
    • Huntington disease: Natural history biomarkers and prospects for therapeutics. Nature reviews
    • Ross, C. A., et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nature reviews. Neurology 10, 204-216, doi: 10. 1038/nrneurol. 2014. 24 (2014).
    • (2014) Neurology , vol.10 , pp. 204-216
    • Ross, C.A.1
  • 5
    • 67650095269 scopus 로고    scopus 로고
    • Beyond the brain: Widespread pathology in Huntington's disease
    • van der Burg, J. M., Bjorkqvist, M., Brundin, P. Beyond the brain: widespread pathology in Huntington's disease. The Lancet. Neurology 8, 765-774, doi: 10. 1016/S1474-4422(09)70178-4 (2009).
    • (2009) The Lancet. Neurology , vol.8 , pp. 765-774
    • Van Der Burg, J.M.1    Bjorkqvist, M.2    Brundin, P.3
  • 6
    • 0029055601 scopus 로고
    • Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form
    • Trottier, Y., et al. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genetics 10, 104-110, doi: 10. 1038/ng0595-104 (1995).
    • (1995) Nature Genetics , vol.10 , pp. 104-110
    • Trottier, Y.1
  • 8
    • 34447636065 scopus 로고    scopus 로고
    • Microglial activation in presymptomatic Huntington's disease gene carriers
    • Tai, Y. F., et al. Microglial activation in presymptomatic Huntington's disease gene carriers. Brain 130, 1759-1766, doi: 10. 1093/brain/awm044 (2007).
    • (2007) Brain , vol.130 , pp. 1759-1766
    • Tai, Y.F.1
  • 9
    • 49249089029 scopus 로고    scopus 로고
    • A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease
    • Bjorkqvist, M., et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. The Journal of experimental medicine 205, 1869-1877, doi: 10. 1084/jem. 20080178 (2008).
    • (2008) The Journal of Experimental Medicine , vol.205 , pp. 1869-1877
    • Bjorkqvist, M.1
  • 10
    • 84870534288 scopus 로고    scopus 로고
    • Mutant huntingtin impairs immune cell migration in Huntington disease
    • Kwan, W., et al. Mutant huntingtin impairs immune cell migration in Huntington disease. Journal of Clinical Investigation 122, 4737-4747, doi: 10. 1172/jci64484 (2012).
    • (2012) Journal of Clinical Investigation , vol.122 , pp. 4737-4747
    • Kwan, W.1
  • 11
    • 84909609615 scopus 로고    scopus 로고
    • Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models
    • Träger, U., et al. Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models. Neurobiology of disease 73, 388-398, doi: 10. 1016/j. nbd. 2014. 10. 012 (2015).
    • (2015) Neurobiology of Disease , vol.73 , pp. 388-398
    • Träger, U.1
  • 12
    • 56349130281 scopus 로고    scopus 로고
    • Use of hand-held dynamometry in the evaluation of lower limb muscle strength in people with Huntington's disease
    • Busse, M. E., Hughes, G., Wiles, C. M., Rosser, A. E. Use of hand-held dynamometry in the evaluation of lower limb muscle strength in people with Huntington's disease. Journal of neurology 255, 1534-1540, doi: 10. 1007/s00415-008-0964-x (2008).
    • (2008) Journal of Neurology , vol.255 , pp. 1534-1540
    • Busse, M.E.1    Hughes, G.2    Wiles, C.M.3    Rosser, A.E.4
  • 13
    • 63449102847 scopus 로고    scopus 로고
    • Neuroendocrine disturbances in Huntington's disease
    • Saleh, N., et al. Neuroendocrine disturbances in Huntington's disease. PLoS One 4, e4962, doi: 10. 1371/journal. pone. 0004962 (2009).
    • (2009) PLoS One , vol.4 , pp. e4962
    • Saleh, N.1
  • 14
    • 0023941141 scopus 로고
    • Huntington's disease mortality in the United States
    • Lanska, D. J., Lavine, L., Lanska, M. J., Schoenberg, B. S. Huntington's disease mortality in the United States. Neurology 38, 769-772 (1988).
    • (1988) Neurology , vol.38 , pp. 769-772
    • Lanska, D.J.1    Lavine, L.2    Lanska, M.J.3    Schoenberg, B.S.4
  • 15
    • 33846369453 scopus 로고    scopus 로고
    • Cardiac dysfunction in the R6/2 mouse model of Huntington's disease
    • Mihm, M. J., et al. Cardiac dysfunction in the R6/2 mouse model of Huntington's disease. Neurobiology of disease 25, 297-308, doi: 10. 1016/j. nbd. 2006. 09. 016 (2007).
    • (2007) Neurobiology of Disease , vol.25 , pp. 297-308
    • Mihm, M.J.1
  • 16
    • 44449104300 scopus 로고    scopus 로고
    • Cardiomyocyte Expression of a Polyglutamine Preamyloid Oligomer Causes Heart Failure
    • Pattison, J. S., et al. Cardiomyocyte Expression of a Polyglutamine Preamyloid Oligomer Causes Heart Failure. Circulation 117, 2743-2751, doi: 10. 1161/circulationaha. 107. 750232 (2008).
    • (2008) Circulation , vol.117 , pp. 2743-2751
    • Pattison, J.S.1
  • 17
    • 0141866674 scopus 로고    scopus 로고
    • Inclusion formation in Huntington's disease R6/2 mouse muscle cultures
    • Orth, M., Cooper, J. M., Bates, G. P., Schapira, A. H. V. Inclusion formation in Huntington's disease R6/2 mouse muscle cultures. Journal of Neurochemistry 87, 1-6, doi: 10. 1046/j. 1471-4159. 2003. 02009. x (2003).
    • (2003) Journal of Neurochemistry , vol.87 , pp. 1-6
    • Orth, M.1    Cooper, J.M.2    Bates, G.P.3    Schapira, A.H.V.4
  • 18
    • 35348941757 scopus 로고    scopus 로고
    • Clinical correlates of mitochondrial function in Huntington's disease muscle
    • Turner, C., Cooper, J. M., Schapira, A. H. V. Clinical correlates of mitochondrial function in Huntington's disease muscle. Movement Disorders 22, 1715-1721, doi: 10. 1002/mds. 21540 (2007).
    • (2007) Movement Disorders , vol.22 , pp. 1715-1721
    • Turner, C.1    Cooper, J.M.2    Schapira, A.H.V.3
  • 19
    • 84876061104 scopus 로고    scopus 로고
    • Human RNA integrity after postmortem retinal tissue recovery
    • Montanini, L., et al. Human RNA integrity after postmortem retinal tissue recovery. Ophthalmic Genet 34, 27-31, doi: 10. 3109/13816810. 2012. 720342 (2013).
    • (2013) Ophthalmic Genet , vol.34 , pp. 27-31
    • Montanini, L.1
  • 20
    • 10744228401 scopus 로고    scopus 로고
    • Effect of agonal and postmortem factors on gene expression profile: Quality control in microarray analyses of postmortem human brain
    • Tomita, H., et al. Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 55, 346-352, doi: 10. 1016/j. biopsych. 2003. 10. 013 (2004).
    • (2004) Biol Psychiatry , vol.55 , pp. 346-352
    • Tomita, H.1
  • 21
    • 33644783812 scopus 로고    scopus 로고
    • Regional and cellular gene expression changes in human Huntington's disease brain
    • Hodges, A. Regional and cellular gene expression changes in human Huntington's disease brain. Human molecular genetics 15, 965-977, doi: 10. 1093/hmg/ddl013 (2006).
    • (2006) Human Molecular Genetics , vol.15 , pp. 965-977
    • Hodges, A.1
  • 22
    • 23344448837 scopus 로고    scopus 로고
    • Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease
    • Borovecki, F., et al. Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America 102, 11023-11028, doi: 10. 1073/pnas. 0504921102 (2005).
    • (2005) Proceedings of the National Academy of Sciences of the United States of America , vol.102 , pp. 11023-11028
    • Borovecki, F.1
  • 23
    • 35448968328 scopus 로고    scopus 로고
    • Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood
    • Runne, H., et al. Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood. Proceedings of the National Academy of Sciences of the United States of America 104, 14424-14429, doi: 10. 1073/pnas. 0703652104 (2007).
    • (2007) Proceedings of the National Academy of Sciences of the United States of America , vol.104 , pp. 14424-14429
    • Runne, H.1
  • 24
    • 72849144063 scopus 로고    scopus 로고
    • Gene expression changes in blood as a putative biomarker for Huntington's disease
    • Lovrecic, L., et al. Gene expression changes in blood as a putative biomarker for Huntington's disease. Movement disorders : official journal of the Movement Disorder Society 24, 2277-2281, doi: 10. 1002/mds. 22477 (2009).
    • (2009) Movement Disorders : Official Journal of the Movement Disorder Society , vol.24 , pp. 2277-2281
    • Lovrecic, L.1
  • 25
    • 84944162590 scopus 로고    scopus 로고
    • Huntington's disease biomarker progression profile identified by transcriptome sequencing in peripheral blood
    • Mastrokolias, A., et al. Huntington's disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. Eur J Hum Genet, doi: 10. 1038/ejhg. 2014. 281 (2015).
    • (2015) Eur J Hum Genet
    • Mastrokolias, A.1
  • 26
    • 68249113963 scopus 로고    scopus 로고
    • Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: Crosssectional analysis of baseline data
    • Tabrizi, S. J., et al. Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: crosssectional analysis of baseline data. The Lancet. Neurology 8, 791-801, doi: 10. 1016/S1474-4422(09)70170-X (2009).
    • (2009) The Lancet. Neurology , vol.8 , pp. 791-801
    • Tabrizi, S.J.1
  • 27
    • 84938389137 scopus 로고    scopus 로고
    • Identification of Genetic Factors that Modify Clinical Onset of Huntington's Disease
    • Consortium G. M. o. H. s. D. G.-H.
    • Consortium, G. M. o. H. s. D. G.-H. Identification of Genetic Factors that Modify Clinical Onset of Huntington's Disease. Cell 162, 516-526, doi: 10. 1016/j. cell. 2015. 07. 003 (2015).
    • (2015) Cell , vol.162 , pp. 516-526
  • 28
    • 85014011092 scopus 로고    scopus 로고
    • RNA-Seq of Huntington's disease patient myeloid cells reveals innate transcriptional dysregulation associated with proinflammatory pathway activation
    • Miller, J. R., et al. RNA-Seq of Huntington's disease patient myeloid cells reveals innate transcriptional dysregulation associated with proinflammatory pathway activation. Human molecular genetics, doi: 10. 1093/hmg/ddw142 (2016).
    • (2016) Human Molecular Genetics
    • Miller, J.R.1
  • 29
    • 84893647488 scopus 로고    scopus 로고
    • Protein co-expression network analysis (ProCoNA)
    • Gibbs, D. L., et al. Protein co-expression network analysis (ProCoNA). Journal of clinical bioinformatics 3, 11, doi: 10. 1186/2043-9113-3-11 (2013).
    • (2013) Journal of Clinical Bioinformatics , vol.3 , pp. 11
    • Gibbs, D.L.1
  • 30
    • 84920862489 scopus 로고    scopus 로고
    • A common gene expression signature in Huntington's disease patient brain regions
    • Neueder, A., Bates, G. P. A common gene expression signature in Huntington's disease patient brain regions. BMC medical genomics 7, 60, doi: 10. 1186/s12920-014-0060-2 (2014).
    • (2014) BMC Medical Genomics , vol.7 , pp. 60
    • Neueder, A.1    Bates, G.P.2
  • 31
    • 33644783812 scopus 로고    scopus 로고
    • Regional and cellular gene expression changes in human Huntington's disease brain
    • Hodges, A., et al. Regional and cellular gene expression changes in human Huntington's disease brain. Human molecular genetics 15, 965-977, doi: 10. 1093/hmg/ddl013 (2006).
    • (2006) Human Molecular Genetics , vol.15 , pp. 965-977
    • Hodges, A.1
  • 33
    • 77953223693 scopus 로고    scopus 로고
    • Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain
    • Gibbs, J. R., et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS genetics 6, e1000952, doi: 10. 1371/journal. pgen. 1000952 (2010).
    • (2010) PLoS Genetics , vol.6 , pp. e1000952
    • Gibbs, J.R.1
  • 34
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: An R package for weighted correlation network analysis
    • Langfelder, P., Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics 9, 559, doi: 10. 1186/1471-2105-9-559 (2008).
    • (2008) BMC Bioinformatics , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 35
    • 84957109105 scopus 로고    scopus 로고
    • RNA sequence analysis of human huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression
    • Labadorf, A., et al. RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression. PLOS ONE 10, e0143563, doi: 10. 1371/journal. pone. 0143563 (2015).
    • (2015) PLOS ONE , vol.10 , pp. e0143563
    • Labadorf, A.1
  • 37
    • 84964632197 scopus 로고    scopus 로고
    • Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology
    • Olmos-Alonso, A., et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology. Brain 139, 891-907, doi: 10. 1093/brain/awv379 (2016).
    • (2016) Brain , vol.139 , pp. 891-907
    • Olmos-Alonso, A.1
  • 38
    • 84962418507 scopus 로고    scopus 로고
    • Complement and microglia mediate early synapse loss in Alzheimer mouse models
    • Hong, S., et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science (New York, N. Y. ), doi: 10. 1126/science. aad8373 (2016).
    • (2016) Science (New York, N. Y. )
    • Hong, S.1
  • 39
    • 84931560814 scopus 로고    scopus 로고
    • Convergent genetic and expression data implicate immunity in Alzheimer's disease
    • International Genomics of Alzheimer's Disease C.
    • International Genomics of Alzheimer's Disease, C. Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimers Dement 11, 658-671, doi: 10. 1016/j. jalz. 2014. 05. 1757 (2015).
    • (2015) Alzheimers Dement , vol.11 , pp. 658-671
  • 40
    • 84876907931 scopus 로고    scopus 로고
    • Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease
    • Zhang, B., et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153, 707-720, doi: 10. 1016/j. cell. 2013. 03. 030 (2013).
    • (2013) Cell , vol.153 , pp. 707-720
    • Zhang, B.1
  • 42
    • 84898837728 scopus 로고    scopus 로고
    • Huntingtin interactions with membrane phospholipids: Strategic targets for therapeutic intervention?
    • Kegel-Gleason, K. B. Huntingtin interactions with membrane phospholipids: strategic targets for therapeutic intervention? Journal of Huntington's disease 2, 239-250, doi: 10. 3233/JHD-130068 (2013).
    • (2013) Journal of Huntington's Disease , vol.2 , pp. 239-250
    • Kegel-Gleason, K.B.1
  • 43
    • 84855975733 scopus 로고    scopus 로고
    • Abnormal peripheral chemokine profile in Huntington's disease
    • Wild, E., et al. Abnormal peripheral chemokine profile in Huntington's disease. PLoS currents 3, RRN1231, doi: 10. 1371/currents. rrn1231 (2011).
    • (2011) PLoS Currents , vol.3 , pp. RRN1231
    • Wild, E.1
  • 45
    • 84866868744 scopus 로고    scopus 로고
    • Aging effects on DNA methylation modules in human brain and blood tissue
    • Horvath, S., et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 13, R97, doi: 10. 1186/gb-2012-13-10-r97 (2012).
    • (2012) Genome Biol , vol.13 , pp. R97
    • Horvath, S.1
  • 46
    • 77958005855 scopus 로고    scopus 로고
    • Is human blood a good surrogate for brain tissue in transcriptional studies?
    • Cai, C., et al. Is human blood a good surrogate for brain tissue in transcriptional studies? BMC genomics 11, 589, doi: 10. 1186/1471-2164-11-589 (2010).
    • (2010) BMC Genomics , vol.11 , pp. 589
    • Cai, C.1
  • 47
    • 84871027393 scopus 로고    scopus 로고
    • Cannabinoid Receptor 2 Signaling in Peripheral Immune Cells Modulates Disease Onset and Severity in Mouse Models of Huntington's Disease
    • Bouchard, J., et al. Cannabinoid Receptor 2 Signaling in Peripheral Immune Cells Modulates Disease Onset and Severity in Mouse Models of Huntington's Disease. Journal of Neuroscience 32, 18259-18268, doi: 10. 1523/jneurosci. 4008-12. 2012 (2012).
    • (2012) Journal of Neuroscience , vol.32 , pp. 18259-18268
    • Bouchard, J.1
  • 48
    • 84855920796 scopus 로고    scopus 로고
    • Bone marrow transplantation confers modest benefits in mouse models of huntington's disease
    • Kwan, W., et al. Bone Marrow Transplantation Confers Modest Benefits in Mouse Models of Huntington's Disease. Journal of Neuroscience 32, 133-142, doi: 10. 1523/jneurosci. 4846-11. 2012 (2012).
    • (2012) Journal of Neuroscience , vol.32 , pp. 133-142
    • Kwan, W.1
  • 49
    • 81955162960 scopus 로고    scopus 로고
    • What have we learned from gene expression profiles in Huntington's disease?
    • Seredenina, T., Luthi-Carter, R. What have we learned from gene expression profiles in Huntington's disease? Neurobiology of disease 45, 83-98, doi: 10. 1016/j. nbd. 2011. 07. 001 (2012).
    • (2012) Neurobiology of Disease , vol.45 , pp. 83-98
    • Seredenina, T.1    Luthi-Carter, R.2
  • 50
    • 84855481293 scopus 로고    scopus 로고
    • Early alterations of brain cellular energy homeostasis in Huntington disease models
    • Mochel, F., et al. Early alterations of brain cellular energy homeostasis in Huntington disease models. The Journal of biological chemistry 287, 1361-1370, doi: 10. 1074/jbc. M111. 309849 (2012).
    • (2012) The Journal of Biological Chemistry , vol.287 , pp. 1361-1370
    • Mochel, F.1
  • 51
    • 26444441008 scopus 로고    scopus 로고
    • HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism
    • Seong, I. S. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Human molecular genetics 14, 2871-2880, doi: 10. 1093/hmg/ddi319 (2005).
    • (2005) Human Molecular Genetics , vol.14 , pp. 2871-2880
    • Seong, I.S.1
  • 52
    • 33749042331 scopus 로고    scopus 로고
    • Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
    • Cui, L., et al. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127, 59-69, doi: 10. 1016/j. cell. 2006. 09. 015 (2006).
    • (2006) Cell , vol.127 , pp. 59-69
    • Cui, L.1
  • 53
    • 77955017449 scopus 로고    scopus 로고
    • Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation
    • Chaturvedi, R. K., et al. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Human molecular genetics 19, 3190-3205, doi: 10. 1093/hmg/ddq229 (2010).
    • (2010) Human Molecular Genetics , vol.19 , pp. 3190-3205
    • Chaturvedi, R.K.1
  • 54
    • 84887289509 scopus 로고    scopus 로고
    • DNA repair mechanisms in Huntington's disease
    • Jonson, I., Ougland, R., Larsen, E. DNA repair mechanisms in Huntington's disease. Molecular neurobiology 47, 1093-1102, doi: 10. 1007/s12035-013-8409-7 (2013).
    • (2013) Molecular Neurobiology , vol.47 , pp. 1093-1102
    • Jonson, I.1    Ougland, R.2    Larsen, E.3
  • 55
    • 84902330133 scopus 로고    scopus 로고
    • Large genetic animal models of Huntington's Disease
    • Morton, A. J., Howland, D. S. Large genetic animal models of Huntington's Disease. Journal of Huntington's disease 2, 3-19, doi: 10. 3233/jhd-130050 (2013).
    • (2013) Journal of Huntington's Disease , vol.2 , pp. 3-19
    • Morton, A.J.1    Howland, D.S.2
  • 57
    • 85015941579 scopus 로고    scopus 로고
    • Common disease signatures between blood and brain in Huntington's Disease
    • Mina, E., et al. Common disease signatures between blood and brain in Huntington's Disease. Orphanet Journal of Rare Diseases (2016).
    • (2016) Orphanet Journal of Rare Diseases
    • Mina, E.1
  • 58
    • 84875655895 scopus 로고    scopus 로고
    • Inflammation in Alzheimer disease-A brief review of the basic science and clinical literature
    • Wyss-Coray, T., Rogers, J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2, a006346, doi: 10. 1101/cshperspect. a006346 (2012).
    • (2012) Cold Spring Harb Perspect Med , vol.2 , pp. a006346
    • Wyss-Coray, T.1    Rogers, J.2
  • 59
    • 84952700826 scopus 로고    scopus 로고
    • New insights on the role of microglia in synaptic pruning in health and disease
    • Hong, S., Dissing-Olesen, L., Stevens, B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol 36, 128-134, doi: 10. 1016/j. conb. 2015. 12. 004 (2016).
    • (2016) Curr Opin Neurobiol , vol.36 , pp. 128-134
    • Hong, S.1    Dissing-Olesen, L.2    Stevens, B.3
  • 60
    • 0030919726 scopus 로고    scopus 로고
    • CAG repeat number governs the development rate of pathology in Huntington's disease
    • Penney, J. B. Jr., Vonsattel, J. P., MacDonald, M. E., Gusella, J. F., Myers, R. H. CAG repeat number governs the development rate of pathology in Huntington's disease. Ann Neurol 41, 689-692, doi: 10. 1002/ana. 410410521 (1997).
    • (1997) Ann Neurol , vol.41 , pp. 689-692
    • Penney, Jr.J.B.1    Vonsattel, J.P.2    MacDonald, M.E.3    Gusella, J.F.4    Myers, R.H.5
  • 61
    • 85009332113 scopus 로고    scopus 로고
    • Unified Huntington's Disease Rating Scale: Reliability and consistency
    • Huntington Study Group
    • Group, H. S. Unified Huntington's Disease Rating Scale: reliability and consistency. Huntington Study Group. Movement disorders : official journal of the Movement Disorder Society 11, 136-142, doi: 10. 1002/mds. 870110204 (1996).
    • (1996) Movement disorders : Official Journal of the Movement Disorder Society , vol.11 , pp. 136-142
    • Group, H.S.1
  • 62
    • 85015949307 scopus 로고    scopus 로고
    • Illumina. TruSeq(R)
    • Illumina. TruSeq(R) RNA Sample Preparation v2 Guide, http://support. illumina. com/content/dam/illumina-support/documents/documentation/chemistry-documentation/samplepreps-truseq/truseqrna/truseq-rna-sample-prep-v2-guide-15026495-f. pdf (2014).
    • (2014) RNA Sample Preparation v2 Guide
  • 63
    • 84861743958 scopus 로고    scopus 로고
    • RNA-SeQC: RNA-seq metrics for quality control and process optimization
    • DeLuca, D. S., et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530-1532, doi: 10. 1093/bioinformatics/bts196 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 1530-1532
    • DeLuca, D.S.1
  • 64
    • 84876996918 scopus 로고    scopus 로고
    • TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    • Kim, D., et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36, doi: 10. 1186/gb-2013-14-4-r36 (2013).
    • (2013) Genome Biol , vol.14 , pp. R36
    • Kim, D.1
  • 65
    • 84925226706 scopus 로고    scopus 로고
    • Svaseq: Removing batch effects and other unwanted noise from sequencing data
    • Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res 42, doi: 10. 1093/nar/gku864 (2014).
    • (2014) Nucleic Acids Res , pp. 42
    • Leek, J.T.1
  • 66
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love, M. I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550, doi: 10. 1186/s13059-014-0550-8 (2014).
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 67
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian, A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102, 15545-15550, doi: 10. 1073/pnas. 0506580102 (2005).
    • (2005) Proceedings of the National Academy of Sciences of the United States of America , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 68
    • 84969910462 scopus 로고    scopus 로고
    • Consortium G. O
    • Consortium, G. O. Gene Ontology Consortium, http://geneontology. org/(2016).
    • (2016) Gene Ontology Consortium
  • 72
    • 85015853608 scopus 로고    scopus 로고
    • BioCarta. http://www. biocarta. com/. (2016).
    • (2016) BioCarta
  • 73
  • 76
    • 77957230671 scopus 로고    scopus 로고
    • A framework for oligonucleotide microarray preprocessing
    • Carvalho, B. S., Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363-2367, doi: 10. 1093/bioinformatics/btq431 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 2363-2367
    • Carvalho, B.S.1    Irizarry, R.A.2
  • 77
    • 85015974301 scopus 로고    scopus 로고
    • Affymetrix. Affymetrix, http://www. affymetrix. com/estore/index. jsp (2016).
    • (2016) Affymetrix. Affymetrix


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.