메뉴 건너뛰기




Volumn 185, Issue 4, 2017, Pages 304-315

Analyses of sensitivity to the missing-at-random assumption using multiple imputation with delta adjustment: Application to a tuberculosis/HIV prevalence survey with incomplete HIV-status data

Author keywords

Causal mediation analysis; Incomplete data; Nonignorable nonresponse; Sensitivity analysis

Indexed keywords

ACQUIRED IMMUNE DEFICIENCY SYNDROME; DATA SET; DETECTION METHOD; DISEASE PREVALENCE; HEALTH STATUS; HEALTH SURVEY; HUMAN IMMUNODEFICIENCY VIRUS; MEDICAL GEOGRAPHY; SENSITIVITY ANALYSIS; TUBERCULOSIS;

EID: 85015902821     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kww107     Document Type: Review
Times cited : (45)

References (30)
  • 1
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika. 1976; 63(3):581-592.
    • (1976) Biometrika , vol.63 , Issue.3 , pp. 581-592
    • Rubin, D.B.1
  • 3
    • 84879516417 scopus 로고    scopus 로고
    • Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros
    • Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18(2):137-150.
    • (2013) Psychol Methods , vol.18 , Issue.2 , pp. 137-150
    • Valeri, L.1    VanderWeele, T.J.2
  • 4
    • 84884974353 scopus 로고    scopus 로고
    • Effect of household and community interventions on the burden of tuberculosis in southern Africa: The ZAMSTAR community-randomised trial
    • Alyes H, Muyoyeta M, Du Toit E, et al. Effect of household and community interventions on the burden of tuberculosis in southern Africa: the ZAMSTAR community-randomised trial. Lancet. 2013;382(9899):1183-1194.
    • (2013) Lancet , vol.382 , Issue.9899 , pp. 1183-1194
    • Alyes, H.1    Muyoyeta, M.2    Du Toit, E.3
  • 5
    • 63449089154 scopus 로고    scopus 로고
    • Refusal bias in HIV prevalence estimates from nationally representative seroprevalence surveys
    • Reniers G, Eaton J. Refusal bias in HIV prevalence estimates from nationally representative seroprevalence surveys. AIDS. 2009;23(5):621-629.
    • (2009) AIDS , vol.23 , Issue.5 , pp. 621-629
    • Reniers, G.1    Eaton, J.2
  • 6
    • 84872378200 scopus 로고    scopus 로고
    • Underestimation of HIV prevalence in surveys when some people already know their status, and ways to reduce the bias
    • Floyd S, Molesworth A, Dube A, et al. Underestimation of HIV prevalence in surveys when some people already know their status, and ways to reduce the bias. AIDS. 2013;27(2):223-242.
    • (2013) AIDS , vol.27 , Issue.2 , pp. 223-242
    • Floyd, S.1    Molesworth, A.2    Dube, A.3
  • 7
    • 84862730934 scopus 로고    scopus 로고
    • HIV status and participation in HIV surveillance in the era of antiretroviral treatment: A study of linked population-based and clinical data in rural South Africa
    • Bärnighausen T, Tanser F, Malaza A, et al. HIV status and participation in HIV surveillance in the era of antiretroviral treatment: A study of linked population-based and clinical data in rural South Africa. Trop Med Int Health. 2012;17(8):e103-e110.
    • (2012) Trop Med Int Health , vol.17 , Issue.8 , pp. e103-e110
    • Bärnighausen, T.1    Tanser, F.2    Malaza, A.3
  • 8
    • 84929458993 scopus 로고    scopus 로고
    • Participation dynamics in population-based longitudinal HIV surveillance in rural South Africa
    • Larmarange J, Mossong J, Bärnighausen T, et al. Participation dynamics in population-based longitudinal HIV surveillance in rural South Africa. PLoS One. 2015;10(4):e0123345.
    • (2015) PLoS One , vol.10 , Issue.4 , pp. e0123345
    • Larmarange, J.1    Mossong, J.2    Bärnighausen, T.3
  • 9
    • 33645814263 scopus 로고    scopus 로고
    • World Health Organization/United Nations Programme on HIV and AIDS, Geneva, Switzerland: World Health Organization
    • World Health Organization/United Nations Programme on HIV and AIDS. Guidelines for Measuring National HIV Prevalence in Population-Based Surveys. Geneva, Switzerland: World Health Organization; 2005.
    • (2005) Guidelines for Measuring National HIV Prevalence in Population-Based Surveys
  • 10
    • 70849118241 scopus 로고    scopus 로고
    • Annual risk of tuberculous infection using different methods in communities with a high prevalence of TB and HIV in Zambia and South Africa
    • Shanaube K, Sismanidis C, Ayles H, et al. Annual risk of tuberculous infection using different methods in communities with a high prevalence of TB and HIV in Zambia and South Africa. PLoS One. 2009;4(11):e7749.
    • (2009) PLoS One , vol.4 , Issue.11 , pp. e7749
    • Shanaube, K.1    Sismanidis, C.2    Ayles, H.3
  • 12
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30(4):377-399.
    • (2011) Stat Med , vol.30 , Issue.4 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 13
    • 79953732420 scopus 로고    scopus 로고
    • MICE: Multivariate imputation by chained equations in R
    • van Buuren S, Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R. J Stat Softw. 2011; 45(3):1-67.
    • (2011) J Stat Softw , vol.45 , Issue.3 , pp. 1-67
    • Van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 14
    • 0001354633 scopus 로고
    • Formalizing subjective notions about the effect of nonrespondents in sample surveys
    • Rubin DB. Formalizing subjective notions about the effect of nonrespondents in sample surveys. J Am Stat Assoc. 1977; 72(359):538-543.
    • (1977) J Am Stat Assoc , vol.72 , Issue.359 , pp. 538-543
    • Rubin, D.B.1
  • 15
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med. 1999;18(6):681-694.
    • (1999) Stat Med , vol.18 , Issue.6 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 16
    • 79951566177 scopus 로고    scopus 로고
    • Sensitivity analysis when data are missing not-at-random [letter]
    • Resseguier N, Giorgi R, Paoletti X. Sensitivity analysis when data are missing not-at-random [letter]. Epidemiology. 2011; 22(2):282.
    • (2011) Epidemiology , vol.22 , Issue.2 , pp. 282
    • Resseguier, N.1    Giorgi, R.2    Paoletti, X.3
  • 19
    • 84983752583 scopus 로고    scopus 로고
    • Sensitivity analysis of incomplete longitudinal data departing from the missing at random assumption: Methodology and application in a clinical trial with drop-outs
    • Moreno-Betancur M, Chavance M. Sensitivity analysis of incomplete longitudinal data departing from the missing at random assumption: methodology and application in a clinical trial with drop-outs. Stat Methods Med Res. 2013; 25(4):1471-1489.
    • (2013) Stat Methods Med Res , vol.25 , Issue.4 , pp. 1471-1489
    • Moreno-Betancur, M.1    Chavance, M.2
  • 20
    • 84908042851 scopus 로고    scopus 로고
    • Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial
    • Liublinska V, Rubin DB. Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial. Stat Med. 2014;33(24):4170-4185.
    • (2014) Stat Med , vol.33 , Issue.24 , pp. 4170-4185
    • Liublinska, V.1    Rubin, D.B.2
  • 21
    • 79952117042 scopus 로고    scopus 로고
    • Odds ratios for mediation analysis for a dichotomous outcome
    • VanderWeele TJ, Vansteelandt S. Odds ratios for mediation analysis for a dichotomous outcome. Am J Epidemiol. 2010; 172(12):1339-1348.
    • (2010) Am J Epidemiol , vol.172 , Issue.12 , pp. 1339-1348
    • VanderWeele, T.J.1    Vansteelandt, S.2
  • 22
    • 0023020183 scopus 로고
    • The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations
    • Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic and statistical considerations. J Pers Soc Psychol. 1986;51(6):1173-1182.
    • (1986) J Pers Soc Psychol , vol.51 , Issue.6 , pp. 1173-1182
    • Baron, R.M.1    Kenny, D.A.2
  • 24
    • 84878998135 scopus 로고    scopus 로고
    • Addressing missing data mechanism uncertainty using multiple-model multiple imputation: Application to a longitudinal clinical trial
    • Siddique J, Harel O, Crespi CM. Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial. Ann Appl Stat. 2012;6(4):1814-1837.
    • (2012) Ann Appl Stat , vol.6 , Issue.4 , pp. 1814-1837
    • Siddique, J.1    Harel, O.2    Crespi, C.M.3
  • 25
    • 84903820681 scopus 로고    scopus 로고
    • Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: Application to a smoking cessation trial
    • Siddique J, Harel O, Crespi CM, et al. Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial. Stat Med. 2014;33(17):3013-3028.
    • (2014) Stat Med , vol.33 , Issue.17 , pp. 3013-3028
    • Siddique, J.1    Harel, O.2    Crespi, C.M.3
  • 26
    • 75749126977 scopus 로고    scopus 로고
    • Missing data handling methods in medical device clinical trials
    • Yan X, Lee S, Li N. Missing data handling methods in medical device clinical trials. J Biopharm Stat. 2009;19(6):1085-1098.
    • (2009) J Biopharm Stat , vol.19 , Issue.6 , pp. 1085-1098
    • Yan, X.1    Lee, S.2    Li, N.3
  • 27
  • 28
    • 84936754983 scopus 로고    scopus 로고
    • Invited commentary: Boundless science-putting natural direct and indirect effects in a clearer empirical context
    • Naimi AI. Invited commentary: boundless science-putting natural direct and indirect effects in a clearer empirical context. Am J Epidemiol. 2015;182(2):109-114.
    • (2015) Am J Epidemiol , vol.182 , Issue.2 , pp. 109-114
    • Naimi, A.I.1
  • 29
    • 84983261595 scopus 로고    scopus 로고
    • Counterfactual theory in social epidemiology: Reconciling analysis and action for the social determinants of health
    • Naimi AI, Kaufman JS. Counterfactual theory in social epidemiology: reconciling analysis and action for the social determinants of health. Curr Epidemiol Rep. 2015;2(1): 52-60.
    • (2015) Curr Epidemiol Rep , vol.2 , Issue.1 , pp. 52-60
    • Naimi, A.I.1    Kaufman, J.S.2
  • 30
    • 84887444688 scopus 로고    scopus 로고
    • Missing data in clinical trials: From clinical assumptions to statistical analysis using pattern mixture models
    • Ratitch B, O'Kelly M, Tosiello R. Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models. Pharm Stat. 2013;12(6): 337-347.
    • (2013) Pharm Stat , vol.12 , Issue.6 , pp. 337-347
    • Ratitch, B.1    O'Kelly, M.2    Tosiello, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.