-
1
-
-
0017133178
-
Inference and missing data
-
Rubin DB. Inference and missing data. Biometrika. 1976; 63(3):581-592.
-
(1976)
Biometrika
, vol.63
, Issue.3
, pp. 581-592
-
-
Rubin, D.B.1
-
3
-
-
84879516417
-
Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros
-
Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18(2):137-150.
-
(2013)
Psychol Methods
, vol.18
, Issue.2
, pp. 137-150
-
-
Valeri, L.1
VanderWeele, T.J.2
-
4
-
-
84884974353
-
Effect of household and community interventions on the burden of tuberculosis in southern Africa: The ZAMSTAR community-randomised trial
-
Alyes H, Muyoyeta M, Du Toit E, et al. Effect of household and community interventions on the burden of tuberculosis in southern Africa: the ZAMSTAR community-randomised trial. Lancet. 2013;382(9899):1183-1194.
-
(2013)
Lancet
, vol.382
, Issue.9899
, pp. 1183-1194
-
-
Alyes, H.1
Muyoyeta, M.2
Du Toit, E.3
-
5
-
-
63449089154
-
Refusal bias in HIV prevalence estimates from nationally representative seroprevalence surveys
-
Reniers G, Eaton J. Refusal bias in HIV prevalence estimates from nationally representative seroprevalence surveys. AIDS. 2009;23(5):621-629.
-
(2009)
AIDS
, vol.23
, Issue.5
, pp. 621-629
-
-
Reniers, G.1
Eaton, J.2
-
6
-
-
84872378200
-
Underestimation of HIV prevalence in surveys when some people already know their status, and ways to reduce the bias
-
Floyd S, Molesworth A, Dube A, et al. Underestimation of HIV prevalence in surveys when some people already know their status, and ways to reduce the bias. AIDS. 2013;27(2):223-242.
-
(2013)
AIDS
, vol.27
, Issue.2
, pp. 223-242
-
-
Floyd, S.1
Molesworth, A.2
Dube, A.3
-
7
-
-
84862730934
-
HIV status and participation in HIV surveillance in the era of antiretroviral treatment: A study of linked population-based and clinical data in rural South Africa
-
Bärnighausen T, Tanser F, Malaza A, et al. HIV status and participation in HIV surveillance in the era of antiretroviral treatment: A study of linked population-based and clinical data in rural South Africa. Trop Med Int Health. 2012;17(8):e103-e110.
-
(2012)
Trop Med Int Health
, vol.17
, Issue.8
, pp. e103-e110
-
-
Bärnighausen, T.1
Tanser, F.2
Malaza, A.3
-
8
-
-
84929458993
-
Participation dynamics in population-based longitudinal HIV surveillance in rural South Africa
-
Larmarange J, Mossong J, Bärnighausen T, et al. Participation dynamics in population-based longitudinal HIV surveillance in rural South Africa. PLoS One. 2015;10(4):e0123345.
-
(2015)
PLoS One
, vol.10
, Issue.4
, pp. e0123345
-
-
Larmarange, J.1
Mossong, J.2
Bärnighausen, T.3
-
9
-
-
33645814263
-
-
World Health Organization/United Nations Programme on HIV and AIDS, Geneva, Switzerland: World Health Organization
-
World Health Organization/United Nations Programme on HIV and AIDS. Guidelines for Measuring National HIV Prevalence in Population-Based Surveys. Geneva, Switzerland: World Health Organization; 2005.
-
(2005)
Guidelines for Measuring National HIV Prevalence in Population-Based Surveys
-
-
-
10
-
-
70849118241
-
Annual risk of tuberculous infection using different methods in communities with a high prevalence of TB and HIV in Zambia and South Africa
-
Shanaube K, Sismanidis C, Ayles H, et al. Annual risk of tuberculous infection using different methods in communities with a high prevalence of TB and HIV in Zambia and South Africa. PLoS One. 2009;4(11):e7749.
-
(2009)
PLoS One
, vol.4
, Issue.11
, pp. e7749
-
-
Shanaube, K.1
Sismanidis, C.2
Ayles, H.3
-
12
-
-
78651256743
-
Multiple imputation using chained equations: Issues and guidance for practice
-
White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30(4):377-399.
-
(2011)
Stat Med
, vol.30
, Issue.4
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
13
-
-
79953732420
-
MICE: Multivariate imputation by chained equations in R
-
van Buuren S, Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R. J Stat Softw. 2011; 45(3):1-67.
-
(2011)
J Stat Softw
, vol.45
, Issue.3
, pp. 1-67
-
-
Van Buuren, S.1
Groothuis-Oudshoorn, K.2
-
14
-
-
0001354633
-
Formalizing subjective notions about the effect of nonrespondents in sample surveys
-
Rubin DB. Formalizing subjective notions about the effect of nonrespondents in sample surveys. J Am Stat Assoc. 1977; 72(359):538-543.
-
(1977)
J Am Stat Assoc
, vol.72
, Issue.359
, pp. 538-543
-
-
Rubin, D.B.1
-
15
-
-
0033616909
-
Multiple imputation of missing blood pressure covariates in survival analysis
-
van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med. 1999;18(6):681-694.
-
(1999)
Stat Med
, vol.18
, Issue.6
, pp. 681-694
-
-
Van Buuren, S.1
Boshuizen, H.C.2
Knook, D.L.3
-
16
-
-
79951566177
-
Sensitivity analysis when data are missing not-at-random [letter]
-
Resseguier N, Giorgi R, Paoletti X. Sensitivity analysis when data are missing not-at-random [letter]. Epidemiology. 2011; 22(2):282.
-
(2011)
Epidemiology
, vol.22
, Issue.2
, pp. 282
-
-
Resseguier, N.1
Giorgi, R.2
Paoletti, X.3
-
19
-
-
84983752583
-
Sensitivity analysis of incomplete longitudinal data departing from the missing at random assumption: Methodology and application in a clinical trial with drop-outs
-
Moreno-Betancur M, Chavance M. Sensitivity analysis of incomplete longitudinal data departing from the missing at random assumption: methodology and application in a clinical trial with drop-outs. Stat Methods Med Res. 2013; 25(4):1471-1489.
-
(2013)
Stat Methods Med Res
, vol.25
, Issue.4
, pp. 1471-1489
-
-
Moreno-Betancur, M.1
Chavance, M.2
-
20
-
-
84908042851
-
Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial
-
Liublinska V, Rubin DB. Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial. Stat Med. 2014;33(24):4170-4185.
-
(2014)
Stat Med
, vol.33
, Issue.24
, pp. 4170-4185
-
-
Liublinska, V.1
Rubin, D.B.2
-
21
-
-
79952117042
-
Odds ratios for mediation analysis for a dichotomous outcome
-
VanderWeele TJ, Vansteelandt S. Odds ratios for mediation analysis for a dichotomous outcome. Am J Epidemiol. 2010; 172(12):1339-1348.
-
(2010)
Am J Epidemiol
, vol.172
, Issue.12
, pp. 1339-1348
-
-
VanderWeele, T.J.1
Vansteelandt, S.2
-
22
-
-
0023020183
-
The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations
-
Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic and statistical considerations. J Pers Soc Psychol. 1986;51(6):1173-1182.
-
(1986)
J Pers Soc Psychol
, vol.51
, Issue.6
, pp. 1173-1182
-
-
Baron, R.M.1
Kenny, D.A.2
-
24
-
-
84878998135
-
Addressing missing data mechanism uncertainty using multiple-model multiple imputation: Application to a longitudinal clinical trial
-
Siddique J, Harel O, Crespi CM. Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial. Ann Appl Stat. 2012;6(4):1814-1837.
-
(2012)
Ann Appl Stat
, vol.6
, Issue.4
, pp. 1814-1837
-
-
Siddique, J.1
Harel, O.2
Crespi, C.M.3
-
25
-
-
84903820681
-
Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: Application to a smoking cessation trial
-
Siddique J, Harel O, Crespi CM, et al. Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial. Stat Med. 2014;33(17):3013-3028.
-
(2014)
Stat Med
, vol.33
, Issue.17
, pp. 3013-3028
-
-
Siddique, J.1
Harel, O.2
Crespi, C.M.3
-
26
-
-
75749126977
-
Missing data handling methods in medical device clinical trials
-
Yan X, Lee S, Li N. Missing data handling methods in medical device clinical trials. J Biopharm Stat. 2009;19(6):1085-1098.
-
(2009)
J Biopharm Stat
, vol.19
, Issue.6
, pp. 1085-1098
-
-
Yan, X.1
Lee, S.2
Li, N.3
-
28
-
-
84936754983
-
Invited commentary: Boundless science-putting natural direct and indirect effects in a clearer empirical context
-
Naimi AI. Invited commentary: boundless science-putting natural direct and indirect effects in a clearer empirical context. Am J Epidemiol. 2015;182(2):109-114.
-
(2015)
Am J Epidemiol
, vol.182
, Issue.2
, pp. 109-114
-
-
Naimi, A.I.1
-
29
-
-
84983261595
-
Counterfactual theory in social epidemiology: Reconciling analysis and action for the social determinants of health
-
Naimi AI, Kaufman JS. Counterfactual theory in social epidemiology: reconciling analysis and action for the social determinants of health. Curr Epidemiol Rep. 2015;2(1): 52-60.
-
(2015)
Curr Epidemiol Rep
, vol.2
, Issue.1
, pp. 52-60
-
-
Naimi, A.I.1
Kaufman, J.S.2
-
30
-
-
84887444688
-
Missing data in clinical trials: From clinical assumptions to statistical analysis using pattern mixture models
-
Ratitch B, O'Kelly M, Tosiello R. Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models. Pharm Stat. 2013;12(6): 337-347.
-
(2013)
Pharm Stat
, vol.12
, Issue.6
, pp. 337-347
-
-
Ratitch, B.1
O'Kelly, M.2
Tosiello, R.3
|