메뉴 건너뛰기




Volumn 25, Issue 4, 2016, Pages 1471-1489

Sensitivity analysis of incomplete longitudinal data departing from the missing at random assumption: Methodology and application in a clinical trial with drop-outs

Author keywords

drop outs; linear mixed model; longitudinal data; Missing data; multiple imputation; pattern mixture model; sensitivity analysis

Indexed keywords

CASE STUDY; CONFERENCE PAPER; CONTROLLED STUDY; DATA ANALYSIS; HUMAN; INSOMNIA; LONGITUDINAL STUDY; MAINTENANCE THERAPY; MAJOR CLINICAL STUDY; MATHEMATICAL COMPUTING; MAXIMUM LIKELIHOOD METHOD; METHODOLOGY; MISSING AT RANDOM; RANDOMIZED CONTROLLED TRIAL; SENSITIVITY ANALYSIS; SIMULATION; SLEEP QUALITY; SLEEP TIME; SLEEP WAKING CYCLE; STATISTICAL MODEL; WAKEFULNESS; PATIENT DROPOUT; PROCEDURES; RANDOMIZED CONTROLLED TRIAL (TOPIC); STATISTICAL ANALYSIS;

EID: 84983752583     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280213490014     Document Type: Conference Paper
Times cited : (27)

References (38)
  • 1
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin D,. Inference and missing data. Biometrika 1976; 63: 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.1
  • 3
    • 38949124382 scopus 로고    scopus 로고
    • Every missingness not at random model has a missingness at random counterpart with equal fit
    • Molenberghs G, Beunckens C, Sotto C, et al. Every missingness not at random model has a missingness at random counterpart with equal fit. J R Stat Soc: Ser B (Stat Methodol) 2008; 70: 371-388.
    • (2008) J R Stat Soc: Ser B (Stat Methodol) , vol.70 , pp. 371-388
    • Molenberghs, G.1    Beunckens, C.2    Sotto, C.3
  • 5
    • 84983754216 scopus 로고    scopus 로고
    • Emerging issues in longitudinal and functional data analysis - Discussion of two important missing data issues
    • Carroll R, Davidian M, Dubin J, et al. Emerging issues in longitudinal and functional data analysis-discussion of two important missing data issues. Stat Sin 2004; 14: 615-629.
    • (2004) Stat Sin , vol.14 , pp. 615-629
    • Carroll, R.1    Davidian, M.2    Dubin, J.3
  • 6
    • 84966613448 scopus 로고    scopus 로고
    • Panel on Handling Missing Data in Clinical Trials; National Research Council CNSTAT & DBASSE. Washington, DC: The National Academies Press
    • Panel on Handling Missing Data in Clinical Trials; National Research Council CNSTAT & DBASSE. The prevention and treatment of missing data in clinical trials, Washington, DC: The National Academies Press, 2010.
    • (2010) The Prevention and Treatment of Missing Data in Clinical Trials
  • 8
    • 84983789230 scopus 로고    scopus 로고
    • Carpenter J and Kenward M. Missing data in randomised clinical trials - a practical guide, (2007, accessed 27 August 2012)
    • Carpenter J and Kenward M. Missing data in randomised clinical trials-a practical guide, www.hta.nhs.uk/nihrmethodology/reports/1589.pdf (2007, accessed 27 August 2012).
  • 9
    • 78650651199 scopus 로고    scopus 로고
    • Missing data: Discussion points from the PSI missing data expert group
    • Burzykowski T, Carpenter J, Coens C, et al. Missing data: discussion points from the PSI missing data expert group. Pharma Stat 2010; 9: 288-297.
    • (2010) Pharma Stat , vol.9 , pp. 288-297
    • Burzykowski, T.1    Carpenter, J.2    Coens, C.3
  • 10
    • 63049138893 scopus 로고    scopus 로고
    • Comments on: Missing data methods in longitudinal studies: A review
    • Daniels M, Wang C,. Comments on: missing data methods in longitudinal studies: a review. TEST: Off J Spanish Soc Stat Oper Res 2009; 18: 51-58.
    • (2009) TEST: Off J Spanish Soc Stat Oper Res , vol.18 , pp. 51-58
    • Daniels, M.1    Wang, C.2
  • 11
    • 63049128281 scopus 로고    scopus 로고
    • Comments on: Missing data methods in longitudinal studies: A review
    • Hogan J,. Comments on: missing data methods in longitudinal studies: a review. TEST: Off J Spanish Soc Stat Oper Res 2009; 18: 59-64.
    • (2009) TEST: Off J Spanish Soc Stat Oper Res , vol.18 , pp. 59-64
    • Hogan, J.1
  • 12
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little R,. Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc 1993; 88: 125-134.
    • (1993) J Am Stat Assoc , vol.88 , pp. 125-134
    • Little, R.1
  • 14
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng X,. Multiple-imputation inferences with uncongenial sources of input. Stat Sci 1994; 9: 538-558.
    • (1994) Stat Sci , vol.9 , pp. 538-558
    • Meng, X.1
  • 15
    • 0042487265 scopus 로고    scopus 로고
    • Strategies to fit pattern-mixture models
    • Thijs H, Molenberghs G, Michiels B, et al. Strategies to fit pattern-mixture models. Biostatistics 2002; 3: 245-265.
    • (2002) Biostatistics , vol.3 , pp. 245-265
    • Thijs, H.1    Molenberghs, G.2    Michiels, B.3
  • 16
    • 0030460385 scopus 로고    scopus 로고
    • Intent-to-treat analysis for longitudinal studies with drop-outs
    • Little R, Yau L,. Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics 1996; 52: 1324-1333.
    • (1996) Biometrics , vol.52 , pp. 1324-1333
    • Little, R.1    Yau, L.2
  • 17
    • 10344225877 scopus 로고    scopus 로고
    • Sensitivity analysis of longitudinal binary data with non-monotone missing values
    • Minini P, Chavance M,. Sensitivity analysis of longitudinal binary data with non-monotone missing values. Biostatistics 2004; 5: 531-544.
    • (2004) Biostatistics , vol.5 , pp. 531-544
    • Minini, P.1    Chavance, M.2
  • 18
    • 0032397716 scopus 로고    scopus 로고
    • Monotone missing data and pattern-mixture models
    • Molenberghs G, Michiels B, Kenward M, et al. Monotone missing data and pattern-mixture models. Stat Neerland 1998; 52: 153-161.
    • (1998) Stat Neerland , vol.52 , pp. 153-161
    • Molenberghs, G.1    Michiels, B.2    Kenward, M.3
  • 19
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • Little R,. A class of pattern-mixture models for normal incomplete data. Biometrika 1994; 81: 471-483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.1
  • 20
    • 1542341537 scopus 로고    scopus 로고
    • Pattern-mixture models with proper time dependence
    • Kenward M, Molenberghs G, Thijs H,. Pattern-mixture models with proper time dependence. Biometrika 2003; 90: 53-71.
    • (2003) Biometrika , vol.90 , pp. 53-71
    • Kenward, M.1    Molenberghs, G.2    Thijs, H.3
  • 21
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
    • Demirtas H, Schafer JL,. On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Stat Med 2003; 22: 2553-2575.
    • (2003) Stat Med , vol.22 , pp. 2553-2575
    • Demirtas, H.1    Schafer, J.L.2
  • 22
    • 79951566177 scopus 로고    scopus 로고
    • Sensitivity analysis when data are missing not-at-random
    • Resseguier N, Giorgi R, Paoletti X,. Sensitivity analysis when data are missing not-at-random. Epidemiology 2011; 22: 282-283.
    • (2011) Epidemiology , vol.22 , pp. 282-283
    • Resseguier, N.1    Giorgi, R.2    Paoletti, X.3
  • 23
    • 34249281320 scopus 로고    scopus 로고
    • Eliciting and using expert opinions about dropout bias in randomized controlled trials
    • White IR, Carpenter J, Evans S, et al. Eliciting and using expert opinions about dropout bias in randomized controlled trials. Clin Trial 2007; 4: 125-139.
    • (2007) Clin Trial , vol.4 , pp. 125-139
    • White, I.R.1    Carpenter, J.2    Evans, S.3
  • 24
    • 84887444688 scopus 로고    scopus 로고
    • Missing data in clinical trials: From clinical assumptions to statistical analysis using pattern mixture models
    • Epub ahead of print 4 January 2013,10.1002/pst.1549
    • Ratitch B, O'Kelly M, Tosiello R,. Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models. Pharma Stat,. Epub ahead of print 4 January 2013,10.1002/pst.1549.
    • Pharma Stat
    • Ratitch, B.1    O'Kelly, M.2    Tosiello, R.3
  • 25
    • 0033636008 scopus 로고    scopus 로고
    • Reparameterizing the pattern mixture model for sensitivity analyses under informative dropout
    • Daniels MJ, Hogan JW,. Reparameterizing the pattern mixture model for sensitivity analyses under informative dropout. Biometrics 2000; 56: 1241-1248.
    • (2000) Biometrics , vol.56 , pp. 1241-1248
    • Daniels, M.J.1    Hogan, J.W.2
  • 26
    • 1842780226 scopus 로고    scopus 로고
    • Sensitivity analysis of longitudinal normal data with drop-outs
    • Minini P, Chavance M,. Sensitivity analysis of longitudinal normal data with drop-outs. Stat Med 2004; 23: 039-1054.
    • (2004) Stat Med , vol.23 , pp. 039-1054
    • Minini, P.1    Chavance, M.2
  • 29
    • 84983753445 scopus 로고    scopus 로고
    • Bates D. Lmer, p-values and all that, (2006, accessed 10 May 2010)
    • Bates D. Lmer, p-values and all that, http://stat.ethz.ch/pipermail/r-help/2006-May/094765.html (2006, accessed 10 May 2010).
  • 30
    • 84983753446 scopus 로고    scopus 로고
    • Bates D. Penalized least squares versus generalized least squares representations of linear mixed models. Department of Statistics, University of Wisconsin Madison. (2011, accessed 10 May 2010)
    • Bates D. Penalized least squares versus generalized least squares representations of linear mixed models. Department of Statistics, University of Wisconsin Madison. http://cran.r-project.org/web/packages/lme4/vignettes/PLSvGLS.pdf (2011, accessed 10 May 2010).
  • 31
    • 79953732420 scopus 로고    scopus 로고
    • Mice: Multivariate imputation by chained equations in R
    • Van Buuren S, Groothuis-Oudshoorn K,. mice: multivariate imputation by chained equations in R. J Stat Software 2011; 45: 1-67.
    • (2011) J Stat Software , vol.45 , pp. 1-67
    • Van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 32
    • 0025801348 scopus 로고
    • Multiple imputation in health-care databases: An overview and some applications
    • Rubin DB, Schenker N,. Multiple imputation in health-care databases: an overview and some applications. Stat Med 1991; 10: 585-598.
    • (1991) Stat Med , vol.10 , pp. 585-598
    • Rubin, D.B.1    Schenker, N.2
  • 33
    • 0000265107 scopus 로고
    • Large-sample significance levels from multiply imputed data using moment-based statistics and an F reference distribution
    • Li KH, Raghunathan TE, Rubin DB,. Large-sample significance levels from multiply imputed data using moment-based statistics and an F reference distribution. J Am Stat Assoc 1991; 86: 1065-1073.
    • (1991) J Am Stat Assoc , vol.86 , pp. 1065-1073
    • Li, K.H.1    Raghunathan, T.E.2    Rubin, D.B.3
  • 34
    • 0001109923 scopus 로고
    • Performing likelihood ratio tests with multiply-imputed data sets
    • Meng XL, Rubin DB,. Performing likelihood ratio tests with multiply-imputed data sets. Biometrika 1992; 79: 103-111.
    • (1992) Biometrika , vol.79 , pp. 103-111
    • Meng, X.L.1    Rubin, D.B.2
  • 35
    • 33845604373 scopus 로고    scopus 로고
    • Bootstrap prediction and Bayesian prediction under misspecified models
    • Fushiki T,. Bootstrap prediction and Bayesian prediction under misspecified models. Bernoulli 2005; 11: 747-758.
    • (2005) Bernoulli , vol.11 , pp. 747-758
    • Fushiki, T.1
  • 36
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • White H,. Maximum likelihood estimation of misspecified models. Econometrica 1982; 50: 1-25.
    • (1982) Econometrica , vol.50 , pp. 1-25
    • White, H.1
  • 37
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S, Leibler R,. On information and sufficiency. Ann Math Stat 1951; 22: 79-86.
    • (1951) Ann Math Stat , vol.22 , pp. 79-86
    • Kullback, S.1    Leibler, R.2
  • 38
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • Robins J, Wang N,. Inference for imputation estimators. Biometrika 2000; 87: 113-124.
    • (2000) Biometrika , vol.87 , pp. 113-124
    • Robins, J.1    Wang, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.