-
1
-
-
0017133178
-
Inference and missing data
-
Rubin D,. Inference and missing data. Biometrika 1976; 63: 581-592.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.1
-
3
-
-
38949124382
-
Every missingness not at random model has a missingness at random counterpart with equal fit
-
Molenberghs G, Beunckens C, Sotto C, et al. Every missingness not at random model has a missingness at random counterpart with equal fit. J R Stat Soc: Ser B (Stat Methodol) 2008; 70: 371-388.
-
(2008)
J R Stat Soc: Ser B (Stat Methodol)
, vol.70
, pp. 371-388
-
-
Molenberghs, G.1
Beunckens, C.2
Sotto, C.3
-
4
-
-
84947810053
-
-
Chichester, Hoboken, NJ: Wiley
-
Molenberghs G, Kenward M,. Missing data in clinical studies, Chichester, Hoboken, NJ: Wiley, 2007.
-
(2007)
Missing Data in Clinical Studies
-
-
Molenberghs, G.1
Kenward, M.2
-
5
-
-
84983754216
-
Emerging issues in longitudinal and functional data analysis - Discussion of two important missing data issues
-
Carroll R, Davidian M, Dubin J, et al. Emerging issues in longitudinal and functional data analysis-discussion of two important missing data issues. Stat Sin 2004; 14: 615-629.
-
(2004)
Stat Sin
, vol.14
, pp. 615-629
-
-
Carroll, R.1
Davidian, M.2
Dubin, J.3
-
6
-
-
84966613448
-
-
Panel on Handling Missing Data in Clinical Trials; National Research Council CNSTAT & DBASSE. Washington, DC: The National Academies Press
-
Panel on Handling Missing Data in Clinical Trials; National Research Council CNSTAT & DBASSE. The prevention and treatment of missing data in clinical trials, Washington, DC: The National Academies Press, 2010.
-
(2010)
The Prevention and Treatment of Missing Data in Clinical Trials
-
-
-
8
-
-
84983789230
-
-
Carpenter J and Kenward M. Missing data in randomised clinical trials - a practical guide, (2007, accessed 27 August 2012)
-
Carpenter J and Kenward M. Missing data in randomised clinical trials-a practical guide, www.hta.nhs.uk/nihrmethodology/reports/1589.pdf (2007, accessed 27 August 2012).
-
-
-
-
9
-
-
78650651199
-
Missing data: Discussion points from the PSI missing data expert group
-
Burzykowski T, Carpenter J, Coens C, et al. Missing data: discussion points from the PSI missing data expert group. Pharma Stat 2010; 9: 288-297.
-
(2010)
Pharma Stat
, vol.9
, pp. 288-297
-
-
Burzykowski, T.1
Carpenter, J.2
Coens, C.3
-
10
-
-
63049138893
-
Comments on: Missing data methods in longitudinal studies: A review
-
Daniels M, Wang C,. Comments on: missing data methods in longitudinal studies: a review. TEST: Off J Spanish Soc Stat Oper Res 2009; 18: 51-58.
-
(2009)
TEST: Off J Spanish Soc Stat Oper Res
, vol.18
, pp. 51-58
-
-
Daniels, M.1
Wang, C.2
-
11
-
-
63049128281
-
Comments on: Missing data methods in longitudinal studies: A review
-
Hogan J,. Comments on: missing data methods in longitudinal studies: a review. TEST: Off J Spanish Soc Stat Oper Res 2009; 18: 59-64.
-
(2009)
TEST: Off J Spanish Soc Stat Oper Res
, vol.18
, pp. 59-64
-
-
Hogan, J.1
-
12
-
-
21144483152
-
Pattern-mixture models for multivariate incomplete data
-
Little R,. Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc 1993; 88: 125-134.
-
(1993)
J Am Stat Assoc
, vol.88
, pp. 125-134
-
-
Little, R.1
-
14
-
-
84972537494
-
Multiple-imputation inferences with uncongenial sources of input
-
Meng X,. Multiple-imputation inferences with uncongenial sources of input. Stat Sci 1994; 9: 538-558.
-
(1994)
Stat Sci
, vol.9
, pp. 538-558
-
-
Meng, X.1
-
16
-
-
0030460385
-
Intent-to-treat analysis for longitudinal studies with drop-outs
-
Little R, Yau L,. Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics 1996; 52: 1324-1333.
-
(1996)
Biometrics
, vol.52
, pp. 1324-1333
-
-
Little, R.1
Yau, L.2
-
17
-
-
10344225877
-
Sensitivity analysis of longitudinal binary data with non-monotone missing values
-
Minini P, Chavance M,. Sensitivity analysis of longitudinal binary data with non-monotone missing values. Biostatistics 2004; 5: 531-544.
-
(2004)
Biostatistics
, vol.5
, pp. 531-544
-
-
Minini, P.1
Chavance, M.2
-
18
-
-
0032397716
-
Monotone missing data and pattern-mixture models
-
Molenberghs G, Michiels B, Kenward M, et al. Monotone missing data and pattern-mixture models. Stat Neerland 1998; 52: 153-161.
-
(1998)
Stat Neerland
, vol.52
, pp. 153-161
-
-
Molenberghs, G.1
Michiels, B.2
Kenward, M.3
-
19
-
-
77956890002
-
A class of pattern-mixture models for normal incomplete data
-
Little R,. A class of pattern-mixture models for normal incomplete data. Biometrika 1994; 81: 471-483.
-
(1994)
Biometrika
, vol.81
, pp. 471-483
-
-
Little, R.1
-
20
-
-
1542341537
-
Pattern-mixture models with proper time dependence
-
Kenward M, Molenberghs G, Thijs H,. Pattern-mixture models with proper time dependence. Biometrika 2003; 90: 53-71.
-
(2003)
Biometrika
, vol.90
, pp. 53-71
-
-
Kenward, M.1
Molenberghs, G.2
Thijs, H.3
-
21
-
-
0042066687
-
On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
-
Demirtas H, Schafer JL,. On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Stat Med 2003; 22: 2553-2575.
-
(2003)
Stat Med
, vol.22
, pp. 2553-2575
-
-
Demirtas, H.1
Schafer, J.L.2
-
22
-
-
79951566177
-
Sensitivity analysis when data are missing not-at-random
-
Resseguier N, Giorgi R, Paoletti X,. Sensitivity analysis when data are missing not-at-random. Epidemiology 2011; 22: 282-283.
-
(2011)
Epidemiology
, vol.22
, pp. 282-283
-
-
Resseguier, N.1
Giorgi, R.2
Paoletti, X.3
-
23
-
-
34249281320
-
Eliciting and using expert opinions about dropout bias in randomized controlled trials
-
White IR, Carpenter J, Evans S, et al. Eliciting and using expert opinions about dropout bias in randomized controlled trials. Clin Trial 2007; 4: 125-139.
-
(2007)
Clin Trial
, vol.4
, pp. 125-139
-
-
White, I.R.1
Carpenter, J.2
Evans, S.3
-
24
-
-
84887444688
-
Missing data in clinical trials: From clinical assumptions to statistical analysis using pattern mixture models
-
Epub ahead of print 4 January 2013,10.1002/pst.1549
-
Ratitch B, O'Kelly M, Tosiello R,. Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models. Pharma Stat,. Epub ahead of print 4 January 2013,10.1002/pst.1549.
-
Pharma Stat
-
-
Ratitch, B.1
O'Kelly, M.2
Tosiello, R.3
-
25
-
-
0033636008
-
Reparameterizing the pattern mixture model for sensitivity analyses under informative dropout
-
Daniels MJ, Hogan JW,. Reparameterizing the pattern mixture model for sensitivity analyses under informative dropout. Biometrics 2000; 56: 1241-1248.
-
(2000)
Biometrics
, vol.56
, pp. 1241-1248
-
-
Daniels, M.J.1
Hogan, J.W.2
-
26
-
-
1842780226
-
Sensitivity analysis of longitudinal normal data with drop-outs
-
Minini P, Chavance M,. Sensitivity analysis of longitudinal normal data with drop-outs. Stat Med 2004; 23: 039-1054.
-
(2004)
Stat Med
, vol.23
, pp. 039-1054
-
-
Minini, P.1
Chavance, M.2
-
29
-
-
84983753445
-
-
Bates D. Lmer, p-values and all that, (2006, accessed 10 May 2010)
-
Bates D. Lmer, p-values and all that, http://stat.ethz.ch/pipermail/r-help/2006-May/094765.html (2006, accessed 10 May 2010).
-
-
-
-
30
-
-
84983753446
-
-
Bates D. Penalized least squares versus generalized least squares representations of linear mixed models. Department of Statistics, University of Wisconsin Madison. (2011, accessed 10 May 2010)
-
Bates D. Penalized least squares versus generalized least squares representations of linear mixed models. Department of Statistics, University of Wisconsin Madison. http://cran.r-project.org/web/packages/lme4/vignettes/PLSvGLS.pdf (2011, accessed 10 May 2010).
-
-
-
-
31
-
-
79953732420
-
Mice: Multivariate imputation by chained equations in R
-
Van Buuren S, Groothuis-Oudshoorn K,. mice: multivariate imputation by chained equations in R. J Stat Software 2011; 45: 1-67.
-
(2011)
J Stat Software
, vol.45
, pp. 1-67
-
-
Van Buuren, S.1
Groothuis-Oudshoorn, K.2
-
32
-
-
0025801348
-
Multiple imputation in health-care databases: An overview and some applications
-
Rubin DB, Schenker N,. Multiple imputation in health-care databases: an overview and some applications. Stat Med 1991; 10: 585-598.
-
(1991)
Stat Med
, vol.10
, pp. 585-598
-
-
Rubin, D.B.1
Schenker, N.2
-
33
-
-
0000265107
-
Large-sample significance levels from multiply imputed data using moment-based statistics and an F reference distribution
-
Li KH, Raghunathan TE, Rubin DB,. Large-sample significance levels from multiply imputed data using moment-based statistics and an F reference distribution. J Am Stat Assoc 1991; 86: 1065-1073.
-
(1991)
J Am Stat Assoc
, vol.86
, pp. 1065-1073
-
-
Li, K.H.1
Raghunathan, T.E.2
Rubin, D.B.3
-
34
-
-
0001109923
-
Performing likelihood ratio tests with multiply-imputed data sets
-
Meng XL, Rubin DB,. Performing likelihood ratio tests with multiply-imputed data sets. Biometrika 1992; 79: 103-111.
-
(1992)
Biometrika
, vol.79
, pp. 103-111
-
-
Meng, X.L.1
Rubin, D.B.2
-
35
-
-
33845604373
-
Bootstrap prediction and Bayesian prediction under misspecified models
-
Fushiki T,. Bootstrap prediction and Bayesian prediction under misspecified models. Bernoulli 2005; 11: 747-758.
-
(2005)
Bernoulli
, vol.11
, pp. 747-758
-
-
Fushiki, T.1
-
36
-
-
0002644952
-
Maximum likelihood estimation of misspecified models
-
White H,. Maximum likelihood estimation of misspecified models. Econometrica 1982; 50: 1-25.
-
(1982)
Econometrica
, vol.50
, pp. 1-25
-
-
White, H.1
-
37
-
-
0001927585
-
On information and sufficiency
-
Kullback S, Leibler R,. On information and sufficiency. Ann Math Stat 1951; 22: 79-86.
-
(1951)
Ann Math Stat
, vol.22
, pp. 79-86
-
-
Kullback, S.1
Leibler, R.2
-
38
-
-
0000555875
-
Inference for imputation estimators
-
Robins J, Wang N,. Inference for imputation estimators. Biometrika 2000; 87: 113-124.
-
(2000)
Biometrika
, vol.87
, pp. 113-124
-
-
Robins, J.1
Wang, N.2
|