-
1
-
-
85015678492
-
-
Accessed on Feb. 18, 2016. [Online]
-
Online Network Traffic Characterization. (2014). Accessed on Feb. 18, 2016. [Online]. Available: http://ict-ontic.eu/
-
(2014)
Online Network Traffic Characterization
-
-
-
2
-
-
77954662106
-
The curse of highly variable functions for local kernel machines
-
Vancouver, BC, Canada
-
Y. Bengio, O. Delalleau, and N. Le Roux, "The curse of highly variable functions for local kernel machines," in Proc. 18th Int. Conf. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2005, pp. 107-114.
-
(2005)
Proc. 18th Int. Conf. Neural Inf. Process. Syst.
, pp. 107-114
-
-
Bengio, Y.1
Delalleau, O.2
Le Roux, N.3
-
3
-
-
34547464544
-
Impact of packet sampling on anomaly detection metrics
-
Rio de Janeiro, Brazil
-
D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina, "Impact of packet sampling on anomaly detection metrics," in Proc. ACM SIGCOMM Conf. Internet Meas., Rio de Janeiro, Brazil, 2006, pp. 159-164.
-
(2006)
Proc. ACM SIGCOMM Conf. Internet Meas.
, pp. 159-164
-
-
Brauckhoff, D.1
Tellenbach, B.2
Wagner, A.3
May, M.4
Lakhina, A.5
-
4
-
-
79956035662
-
UNADA: Unsupervised network anomaly detection using sub-space outliers ranking
-
Valencia, Spain
-
P. Casas, J. Mazel, and P. Owezarski, "UNADA: Unsupervised network anomaly detection using sub-space outliers ranking," in Proc. NETWORKING 10th Int. IFIP TC 6 Netw. Conf., Valencia, Spain, 2011, pp. 40-51.
-
(2011)
Proc. NETWORKING 10th Int. IFIP TC 6 Netw. Conf.
, pp. 40-51
-
-
Casas, P.1
Mazel, J.2
Owezarski, P.3
-
5
-
-
84858698273
-
Unsupervised network intrusion detection systems: Detecting the unknown without knowledge
-
P. Casas, J. Mazel, and P. Owezarski, "Unsupervised network intrusion detection systems: Detecting the unknown without knowledge," Comput. Commun., vol. 35, no. 7, pp. 772-783, 2012.
-
(2012)
Comput. Commun.
, vol.35
, Issue.7
, pp. 772-783
-
-
Casas, P.1
Mazel, J.2
Owezarski, P.3
-
6
-
-
77952616174
-
Predictive network anomaly detection and visualization
-
Jun.
-
M. Celenk, T. Conley, J. Willis, and J. Graham, "Predictive network anomaly detection and visualization," IEEE Trans. Inf. Forensics Security, vol. 5, no. 2, pp. 288-299, Jun. 2010.
-
(2010)
IEEE Trans. Inf. Forensics Security
, vol.5
, Issue.2
, pp. 288-299
-
-
Celenk, M.1
Conley, T.2
Willis, J.3
Graham, J.4
-
7
-
-
84921476517
-
Clustering spam campaigns with fuzzy hashing
-
Chiang Mai, Thailand, Nov.
-
J. Chen, R. Fontugne, A. Kato, and K. Fukuda, "Clustering spam campaigns with fuzzy hashing," in Proc. AINTEC Asian Internet Eng. Conf., Chiang Mai, Thailand, Nov. 2014, p. 66.
-
(2014)
Proc. AINTEC Asian Internet Eng. Conf.
, pp. 66
-
-
Chen, J.1
Fontugne, R.2
Kato, A.3
Fukuda, K.4
-
8
-
-
0036048626
-
An incremental grid density-based clustering algorithm
-
Aug.
-
N. Chen, A. Chen, and L.-X. Zhou, "An incremental grid density-based clustering algorithm," J. Softw., vol. 13, no. 1, pp. 1-7, Aug. 2002.
-
(2002)
J. Softw.
, vol.13
, Issue.1
, pp. 1-7
-
-
Chen, N.1
Chen, A.2
Zhou, L.-X.3
-
9
-
-
84946064516
-
Unsupervised network anomaly detection in real-time on big data
-
Cham, Switzerland: Springer
-
J. Dromard, G. Roudière, and P. Owezarski, "Unsupervised network anomaly detection in real-time on big data," in New Trends in Databases and Information Systems, vol. 539. Cham, Switzerland: Springer, 2015, pp. 197-206.
-
(2015)
New Trends in Databases and Information Systems
, vol.539
, pp. 197-206
-
-
Dromard, J.1
Roudière, G.2
Owezarski, P.3
-
10
-
-
33745441630
-
The MINDS-Minnesota intrusion detection system
-
Cambridge, MA, USA: MIT Press
-
L. Ertoz et al., "The MINDS-Minnesota intrusion detection system," in Next Generation Data Mining. Cambridge, MA, USA: MIT Press, 2004.
-
(2004)
Next Generation Data Mining
-
-
Ertoz, L.1
-
11
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Portland, OR, USA
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proc. 2nd Int. Conf. Knowl. Disc. Data Min., Portland, OR, USA, 1996, pp. 226-231.
-
(1996)
Proc. 2nd Int. Conf. Knowl. Disc. Data Min.
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
12
-
-
33845454236
-
-
Heidelberg, Germany: Springer
-
P. F. Evangelista, M. J. Embrechts, and B. K. Szymanski, Taming the Curse of Dimensionality in Kernels and Novelty Detection. Heidelberg, Germany: Springer, 2006, pp. 425-438.
-
(2006)
Taming the Curse of Dimensionality in Kernels and Novelty Detection
, pp. 425-438
-
-
Evangelista, P.F.1
Embrechts, M.J.2
Szymanski, B.K.3
-
13
-
-
79955076640
-
MAWILab: Combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking
-
Philadelphia, PA, USA
-
R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, "MAWILab: Combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking," in Proc. ACM CoNEXT, Philadelphia, PA, USA, 2010, p. 8.
-
(2010)
Proc. ACM CoNEXT
, pp. 8
-
-
Fontugne, R.1
Borgnat, P.2
Abry, P.3
Fukuda, K.4
-
14
-
-
84937927955
-
Online adaptive anomaly detection for augmented network flows
-
Paris, France, Sep.
-
D. Ippoliti and X. Zhou, "Online adaptive anomaly detection for augmented network flows," in Proc. IEEE 22nd Int. Symp. Model. Anal. Simulat. Comput. Telecommun. Syst., Paris, France, Sep. 2014, pp. 433-442.
-
(2014)
Proc. IEEE 22nd Int. Symp. Model. Anal. Simulat. Comput. Telecommun. Syst.
, pp. 433-442
-
-
Ippoliti, D.1
Zhou, X.2
-
15
-
-
57849141227
-
Anomaly intrusion detection system using Gaussian mixture model
-
Busan, South Korea
-
M. Bahrololum and M. Khaleghi, "Anomaly intrusion detection system using Gaussian mixture model," in Proc. Int. Conf. Converg. Inf. Technol., vol. 1. Busan, South Korea, pp. 1162-1167, 2008.
-
(2008)
Proc. Int. Conf. Converg. Inf. Technol.
, vol.1
, pp. 1162-1167
-
-
Bahrololum, M.1
Khaleghi, M.2
-
16
-
-
75149179043
-
Histogram-based traffic anomaly detection
-
Jun.
-
A. Kind, M. Stoecklin, and X. Dimitropoulos, "Histogram-based traffic anomaly detection," IEEE Trans. Netw. Service Manag., vol. 6, no. 2, pp. 110-121, Jun. 2009.
-
(2009)
IEEE Trans. Netw. Service Manag.
, vol.6
, Issue.2
, pp. 110-121
-
-
Kind, A.1
Stoecklin, M.2
Dimitropoulos, X.3
-
17
-
-
0025447750
-
The R∗-tree: An efficient and robust access method for points and rectangles
-
N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, "The R∗-tree: An efficient and robust access method for points and rectangles," SIGMOD Rec., vol. 19, no. 2, pp. 322-331, 1990.
-
(1990)
SIGMOD Rec.
, vol.19
, Issue.2
, pp. 322-331
-
-
Beckmann, N.1
Kriegel, H.-P.2
Schneider, R.3
Seeger, B.4
-
18
-
-
85015617565
-
-
LAAS-CNRS. Accessed on Feb. 18, [Online]
-
LAAS-CNRS. Metrology for Security and Quality of Service. Accessed on Feb. 18, 2016. [Online]. Available: http://projects.laas.fr/METROSEC/
-
(2016)
Metrology for Security and Quality of Service
-
-
-
19
-
-
33847290520
-
Mining anomalies using traffic feature distributions
-
A. Lakhina, M. Crovella, and C. Diot, "Mining anomalies using traffic feature distributions," ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 217-228, 2005.
-
(2005)
ACM SIGCOMM Comput. Commun. Rev.
, vol.35
, Issue.4
, pp. 217-228
-
-
Lakhina, A.1
Crovella, M.2
Diot, C.3
-
20
-
-
21844451952
-
Diagnosing network-wide traffic anomalies
-
Portland, OR, USA
-
A. Lakhina, M. Crovella, and C. Diot, "Diagnosing network-wide traffic anomalies," in Proc. Conf. Appl. Technol. Archit. Protocols Comput. Commun., Portland, OR, USA, 2004, pp. 219-230.
-
(2004)
Proc. Conf. Appl. Technol. Archit. Protocols Comput. Commun.
, pp. 219-230
-
-
Lakhina, A.1
Crovella, M.2
Diot, C.3
-
21
-
-
84868695480
-
Unsupervised anomaly detection in network intrusion detection using clusters
-
Newcastle, NSW, Australia
-
K. Leung and C. Leckie, "Unsupervised anomaly detection in network intrusion detection using clusters," in Proc. 28th Aust. Comput. Sci. Conf. (ACSC), Newcastle, NSW, Australia, 2005, pp. 333-342.
-
(2005)
Proc. 28th Aust. Comput. Sci. Conf. (ACSC)
, pp. 333-342
-
-
Leung, K.1
Leckie, C.2
-
22
-
-
84922769412
-
-
Ph.D. dissertation, Lab. Anal. Archit. Syst., Inst. Nat. des Sci. Appliquées de Toulouse, Toulouse, France, Dec.
-
J. Mazel, "Unsupervised network anomaly detection," Ph.D. dissertation, Lab. Anal. Archit. Syst., Inst. Nat. des Sci. Appliquées de Toulouse, Toulouse, France, Dec. 2011.
-
(2011)
Unsupervised Network Anomaly Detection
-
-
Mazel, J.1
-
23
-
-
84859053923
-
Network anomaly detection by cascading K-means clustering and C4.5 decision tree algorithm
-
Mar.
-
A. P. Muniyandi, R. Rajeswari, and R. Rajaram, "Network anomaly detection by cascading K-means clustering and C4.5 decision tree algorithm," Proc. Eng., vol. 30, pp. 174-182, Mar. 2012.
-
(2012)
Proc. Eng.
, vol.30
, pp. 174-182
-
-
Muniyandi, A.P.1
Rajeswari, R.2
Rajaram, R.3
-
24
-
-
84895516539
-
Signal processing-based anomaly detection techniques: A comparative analysis
-
J. Ndong and K. Salamatian, "Signal processing-based anomaly detection techniques: A comparative analysis," in Proc. INTERNET, 2011, pp. 32-39.
-
(2011)
Proc. INTERNET
, pp. 32-39
-
-
Ndong, J.1
Salamatian, K.2
-
25
-
-
34250315640
-
An overview of anomaly detection techniques: Existing solutions and latest technological trends
-
Aug.
-
A. Patcha and J.-M. Park, "An overview of anomaly detection techniques: Existing solutions and latest technological trends," Comput. Netw., vol. 51, no. 12, pp. 3448-3470, Aug. 2007.
-
(2007)
Comput. Netw.
, vol.51
, Issue.12
, pp. 3448-3470
-
-
Patcha, A.1
Park, J.-M.2
-
26
-
-
0038663185
-
Intrusion detection with unlabeled data using clustering
-
Philadelphia, PA, USA
-
L. Portnoy, E. Eskin, and S. Stolfo, "Intrusion detection with unlabeled data using clustering," in Proc. ACM CSS Workshop Data Min. Appl. Security (DMSA), Philadelphia, PA, USA, 2001, pp. 5-8.
-
(2001)
Proc. ACM CSS Workshop Data Min. Appl. Security (DMSA)
, pp. 5-8
-
-
Portnoy, L.1
Eskin, E.2
Stolfo, S.3
-
27
-
-
80052417509
-
Finding a "Kneedle" in a haystack: Detecting knee points in system behavior
-
in Minneapolis, MN, USA
-
V. Satopaa, J. R. Albrecht, D. E. Irwin, and B. Raghavan, "Finding a "Kneedle" in a haystack: Detecting knee points in system behavior," in Proc. Int. Conf. Distrib. Comput. Syst. Workshops, Minneapolis, MN, USA, 2011, pp. 166-171.
-
(2011)
Proc. Int. Conf. Distrib. Comput. Syst. Workshops
, pp. 166-171
-
-
Satopaa, V.1
Albrecht, J.R.2
Irwin, D.E.3
Raghavan, B.4
-
28
-
-
85016725561
-
-
Cambridge, MA, USA: MIT Press
-
B. Schölkopf, J. Platt, and T. Hoffman, In-Network PCA and Anomaly Detection. Cambridge, MA, USA: MIT Press, 2007, pp. 617-624.
-
(2007)
In-Network PCA and Anomaly Detection
, pp. 617-624
-
-
Schölkopf, B.1
Platt, J.2
Hoffman, T.3
-
29
-
-
27144518261
-
A novel anomaly detection scheme based on principal component classifier
-
Melbourne, FL, USA
-
M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, "A novel anomaly detection scheme based on principal component classifier," in Proc. IEEE Found. New Directions Data Min. Workshop, Melbourne, FL, USA, 2003, pp. 172-179.
-
(2003)
Proc. IEEE Found. New Directions Data Min. Workshop
, pp. 172-179
-
-
Shyu, M.-L.1
Chen, S.-C.2
Sarinnapakorn, K.3
Chang, L.4
-
30
-
-
0002965815
-
The proof and measurement of association between two things
-
C. Spearman, "The proof and measurement of association between two things," Amer. J. Psychol., vol. 15, no. 1, pp. 72-101, 1904.
-
(1904)
Amer. J. Psychol.
, vol.15
, Issue.1
, pp. 72-101
-
-
Spearman, C.1
-
31
-
-
79960255491
-
The anomaly detection by using DBSCAN clustering with multiple parameters
-
Apr.
-
T. M. Thang and J. Kim, "The anomaly detection by using DBSCAN clustering with multiple parameters," in Proc. Inf. Sci. Appl. (ICISA), Apr. 2011, pp. 1-5.
-
(2011)
Proc. Inf. Sci. Appl. (ICISA)
, pp. 1-5
-
-
Thang, T.M.1
Kim, J.2
-
32
-
-
0043166339
-
Anomaly detection in IP networks
-
Aug.
-
M. Thottan and C. Ji, "Anomaly detection in IP networks," IEEE Trans. Signal Process., vol. 51, no. 8, pp. 2191-2204, Aug. 2003.
-
(2003)
IEEE Trans. Signal Process
, vol.51
, Issue.8
, pp. 2191-2204
-
-
Thottan, M.1
Ji, C.2
|