메뉴 건너뛰기




Volumn 14, Issue 1, 2017, Pages 34-47

Online and Scalable Unsupervised Network Anomaly Detection Method

Author keywords

clustering algorithms; Intrusion detection; unsupervised learning

Indexed keywords

CLUSTERING ALGORITHMS; MERCURY (METAL); UNSUPERVISED LEARNING;

EID: 85015676957     PISSN: 19324537     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNSM.2016.2627340     Document Type: Article
Times cited : (107)

References (32)
  • 1
    • 85015678492 scopus 로고    scopus 로고
    • Accessed on Feb. 18, 2016. [Online]
    • Online Network Traffic Characterization. (2014). Accessed on Feb. 18, 2016. [Online]. Available: http://ict-ontic.eu/
    • (2014) Online Network Traffic Characterization
  • 4
    • 79956035662 scopus 로고    scopus 로고
    • UNADA: Unsupervised network anomaly detection using sub-space outliers ranking
    • Valencia, Spain
    • P. Casas, J. Mazel, and P. Owezarski, "UNADA: Unsupervised network anomaly detection using sub-space outliers ranking," in Proc. NETWORKING 10th Int. IFIP TC 6 Netw. Conf., Valencia, Spain, 2011, pp. 40-51.
    • (2011) Proc. NETWORKING 10th Int. IFIP TC 6 Netw. Conf. , pp. 40-51
    • Casas, P.1    Mazel, J.2    Owezarski, P.3
  • 5
    • 84858698273 scopus 로고    scopus 로고
    • Unsupervised network intrusion detection systems: Detecting the unknown without knowledge
    • P. Casas, J. Mazel, and P. Owezarski, "Unsupervised network intrusion detection systems: Detecting the unknown without knowledge," Comput. Commun., vol. 35, no. 7, pp. 772-783, 2012.
    • (2012) Comput. Commun. , vol.35 , Issue.7 , pp. 772-783
    • Casas, P.1    Mazel, J.2    Owezarski, P.3
  • 8
    • 0036048626 scopus 로고    scopus 로고
    • An incremental grid density-based clustering algorithm
    • Aug.
    • N. Chen, A. Chen, and L.-X. Zhou, "An incremental grid density-based clustering algorithm," J. Softw., vol. 13, no. 1, pp. 1-7, Aug. 2002.
    • (2002) J. Softw. , vol.13 , Issue.1 , pp. 1-7
    • Chen, N.1    Chen, A.2    Zhou, L.-X.3
  • 9
    • 84946064516 scopus 로고    scopus 로고
    • Unsupervised network anomaly detection in real-time on big data
    • Cham, Switzerland: Springer
    • J. Dromard, G. Roudière, and P. Owezarski, "Unsupervised network anomaly detection in real-time on big data," in New Trends in Databases and Information Systems, vol. 539. Cham, Switzerland: Springer, 2015, pp. 197-206.
    • (2015) New Trends in Databases and Information Systems , vol.539 , pp. 197-206
    • Dromard, J.1    Roudière, G.2    Owezarski, P.3
  • 10
    • 33745441630 scopus 로고    scopus 로고
    • The MINDS-Minnesota intrusion detection system
    • Cambridge, MA, USA: MIT Press
    • L. Ertoz et al., "The MINDS-Minnesota intrusion detection system," in Next Generation Data Mining. Cambridge, MA, USA: MIT Press, 2004.
    • (2004) Next Generation Data Mining
    • Ertoz, L.1
  • 11
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Portland, OR, USA
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proc. 2nd Int. Conf. Knowl. Disc. Data Min., Portland, OR, USA, 1996, pp. 226-231.
    • (1996) Proc. 2nd Int. Conf. Knowl. Disc. Data Min. , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 13
    • 79955076640 scopus 로고    scopus 로고
    • MAWILab: Combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking
    • Philadelphia, PA, USA
    • R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, "MAWILab: Combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking," in Proc. ACM CoNEXT, Philadelphia, PA, USA, 2010, p. 8.
    • (2010) Proc. ACM CoNEXT , pp. 8
    • Fontugne, R.1    Borgnat, P.2    Abry, P.3    Fukuda, K.4
  • 15
    • 57849141227 scopus 로고    scopus 로고
    • Anomaly intrusion detection system using Gaussian mixture model
    • Busan, South Korea
    • M. Bahrololum and M. Khaleghi, "Anomaly intrusion detection system using Gaussian mixture model," in Proc. Int. Conf. Converg. Inf. Technol., vol. 1. Busan, South Korea, pp. 1162-1167, 2008.
    • (2008) Proc. Int. Conf. Converg. Inf. Technol. , vol.1 , pp. 1162-1167
    • Bahrololum, M.1    Khaleghi, M.2
  • 17
    • 0025447750 scopus 로고
    • The R∗-tree: An efficient and robust access method for points and rectangles
    • N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, "The R∗-tree: An efficient and robust access method for points and rectangles," SIGMOD Rec., vol. 19, no. 2, pp. 322-331, 1990.
    • (1990) SIGMOD Rec. , vol.19 , Issue.2 , pp. 322-331
    • Beckmann, N.1    Kriegel, H.-P.2    Schneider, R.3    Seeger, B.4
  • 18
    • 85015617565 scopus 로고    scopus 로고
    • LAAS-CNRS. Accessed on Feb. 18, [Online]
    • LAAS-CNRS. Metrology for Security and Quality of Service. Accessed on Feb. 18, 2016. [Online]. Available: http://projects.laas.fr/METROSEC/
    • (2016) Metrology for Security and Quality of Service
  • 19
    • 33847290520 scopus 로고    scopus 로고
    • Mining anomalies using traffic feature distributions
    • A. Lakhina, M. Crovella, and C. Diot, "Mining anomalies using traffic feature distributions," ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 217-228, 2005.
    • (2005) ACM SIGCOMM Comput. Commun. Rev. , vol.35 , Issue.4 , pp. 217-228
    • Lakhina, A.1    Crovella, M.2    Diot, C.3
  • 21
    • 84868695480 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clusters
    • Newcastle, NSW, Australia
    • K. Leung and C. Leckie, "Unsupervised anomaly detection in network intrusion detection using clusters," in Proc. 28th Aust. Comput. Sci. Conf. (ACSC), Newcastle, NSW, Australia, 2005, pp. 333-342.
    • (2005) Proc. 28th Aust. Comput. Sci. Conf. (ACSC) , pp. 333-342
    • Leung, K.1    Leckie, C.2
  • 22
    • 84922769412 scopus 로고    scopus 로고
    • Ph.D. dissertation, Lab. Anal. Archit. Syst., Inst. Nat. des Sci. Appliquées de Toulouse, Toulouse, France, Dec.
    • J. Mazel, "Unsupervised network anomaly detection," Ph.D. dissertation, Lab. Anal. Archit. Syst., Inst. Nat. des Sci. Appliquées de Toulouse, Toulouse, France, Dec. 2011.
    • (2011) Unsupervised Network Anomaly Detection
    • Mazel, J.1
  • 23
    • 84859053923 scopus 로고    scopus 로고
    • Network anomaly detection by cascading K-means clustering and C4.5 decision tree algorithm
    • Mar.
    • A. P. Muniyandi, R. Rajeswari, and R. Rajaram, "Network anomaly detection by cascading K-means clustering and C4.5 decision tree algorithm," Proc. Eng., vol. 30, pp. 174-182, Mar. 2012.
    • (2012) Proc. Eng. , vol.30 , pp. 174-182
    • Muniyandi, A.P.1    Rajeswari, R.2    Rajaram, R.3
  • 24
    • 84895516539 scopus 로고    scopus 로고
    • Signal processing-based anomaly detection techniques: A comparative analysis
    • J. Ndong and K. Salamatian, "Signal processing-based anomaly detection techniques: A comparative analysis," in Proc. INTERNET, 2011, pp. 32-39.
    • (2011) Proc. INTERNET , pp. 32-39
    • Ndong, J.1    Salamatian, K.2
  • 25
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • Aug.
    • A. Patcha and J.-M. Park, "An overview of anomaly detection techniques: Existing solutions and latest technological trends," Comput. Netw., vol. 51, no. 12, pp. 3448-3470, Aug. 2007.
    • (2007) Comput. Netw. , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 30
    • 0002965815 scopus 로고
    • The proof and measurement of association between two things
    • C. Spearman, "The proof and measurement of association between two things," Amer. J. Psychol., vol. 15, no. 1, pp. 72-101, 1904.
    • (1904) Amer. J. Psychol. , vol.15 , Issue.1 , pp. 72-101
    • Spearman, C.1
  • 31
    • 79960255491 scopus 로고    scopus 로고
    • The anomaly detection by using DBSCAN clustering with multiple parameters
    • Apr.
    • T. M. Thang and J. Kim, "The anomaly detection by using DBSCAN clustering with multiple parameters," in Proc. Inf. Sci. Appl. (ICISA), Apr. 2011, pp. 1-5.
    • (2011) Proc. Inf. Sci. Appl. (ICISA) , pp. 1-5
    • Thang, T.M.1    Kim, J.2
  • 32
    • 0043166339 scopus 로고    scopus 로고
    • Anomaly detection in IP networks
    • Aug.
    • M. Thottan and C. Ji, "Anomaly detection in IP networks," IEEE Trans. Signal Process., vol. 51, no. 8, pp. 2191-2204, Aug. 2003.
    • (2003) IEEE Trans. Signal Process , vol.51 , Issue.8 , pp. 2191-2204
    • Thottan, M.1    Ji, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.