메뉴 건너뛰기




Volumn 30, Issue , 2012, Pages 174-182

Network anomaly detection by cascading k-Means clustering and C4.5 decision tree algorithm

Author keywords

Anomaly detection; C4.5 decision tree; k Means clustering

Indexed keywords

ANOMALY DETECTION; ANOMALY DETECTION METHODS; ANOMALY DETECTION SYSTEMS; C4.5 DECISION TREE ALGORITHM; C4.5 DECISION TREE METHOD; DECISION BOUNDARY; EUCLIDEAN DISTANCE; FALSE ALARM RATE; HIGH DETECTION RATE; K CLUSTER; K-MEANS; K-MEANS CLUSTERING; K-MEANS CLUSTERING METHOD; MALICIOUS ACTIVITIES; NETWORK ANOMALY DETECTION; NETWORK ENVIRONMENTS; NETWORK INTRUSION DETECTION SYSTEMS;

EID: 84859053923     PISSN: 18777058     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1016/j.proeng.2012.01.849     Document Type: Conference Paper
Times cited : (194)

References (30)
  • 1
    • 84859017418 scopus 로고    scopus 로고
    • Technical Report, Department of Computer Engineering, Bilkent University February
    • Aksoy, S., "K-Nearest Neighbor Classifier and Distance Functions," Technical Report, Department of Computer Engineering, Bilkent University (February 2008)
    • (2008) K-Nearest Neighbor Classifier and Distance Functions
    • Aksoy, S.1
  • 9
    • 70349681015 scopus 로고    scopus 로고
    • Robust anomaly detection using support vector machines
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • Hu, W., Liao, Y., and Vemuri, V. R., "Robust anomaly detection using support vector machines", In Proceedings of the International Conference on Machine Learning, 2003 Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 282-289
    • (2003) Proceedings of the International Conference on Machine Learning , pp. 282-289
    • Hu, W.1    Liao, Y.2    Vemuri, V.R.3
  • 13
    • 0034455983 scopus 로고    scopus 로고
    • Adaptive intrusion detection: A data mining approach
    • Lee, W., Stolfo, S. J., and Mok, K. W., "Adaptive intrusion detection: A data mining approach," Artificial Intelligence Review, 2000 14, 6, pp. 533-567
    • (2000) Artificial Intelligence Review , vol.14 , Issue.6 , pp. 533-567
    • Lee, W.1    Stolfo, S.J.2    Mok, K.W.3
  • 16
    • 11844281602 scopus 로고    scopus 로고
    • Tech. Rep. CS-2003-06, Department of Computer Science, Florida Institute of Technology Melbourne FL 32901. March
    • Mahoney, M. V., Chan, P. K., and Arshad, M. H., "A machine learning approach to anomaly detection", Tech. Rep. CS-2003-06, Department of Computer Science, Florida Institute of Technology Melbourne FL 32901. March 2003
    • (2003) A Machine Learning Approach to Anomaly Detection
    • Mahoney, M.V.1    Chan, P.K.2    Arshad, M.H.3
  • 23
    • 33646353334 scopus 로고    scopus 로고
    • Outlier detection with one-class kernel fisher discriminants
    • Roth, V., "Outlier detection with one-class kernel fisher discriminants", In NIPS 2004.
    • (2004) NIPS
    • Roth, V.1
  • 24
    • 33645717587 scopus 로고    scopus 로고
    • Kernel fisher discriminants for outlier detection
    • Roth, V., "Kernel fisher discriminants for outlier detection", Neural Computation 18, 4, 2006, pp. 942-960.
    • (2006) Neural Computation , vol.18 , Issue.4 , pp. 942-960
    • Roth, V.1
  • 26
    • 0033734375 scopus 로고    scopus 로고
    • To reject or not to reject: That is the question-an answer in case of neural classifiers
    • Stefano, C., Sansone, C., and Vento, M., "To reject or not to reject: that is the question-an answer in case of neural classifiers", IEEE Transactions on Systems, Management and Cybernetics 30, 2000, 1, pp. 84-94.
    • (2000) IEEE Transactions on Systems, Management and Cybernetics , vol.30 , Issue.1 , pp. 84-94
    • Stefano, C.1    Sansone, C.2    Vento, M.3
  • 30
    • 0141723181 scopus 로고    scopus 로고
    • KDD Cup 1999 Data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99. html.
    • KDD Cup 1999 Data


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.