메뉴 건너뛰기




Volumn 18, Issue 3, 2012, Pages 204-214

Forecasting daily stream flows using artificial intelligence approaches

Author keywords

Forecasting; Gene expression programming; Neural networks; Neuro fuzzy

Indexed keywords


EID: 85015469073     PISSN: 09715010     EISSN: 21643040     Source Type: Journal    
DOI: 10.1080/09715010.2012.721189     Document Type: Article
Times cited : (19)

References (43)
  • 1
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski, JF. 2008. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J. Hydrol., 353:247–266.
    • (2008) J. Hydrol. , vol.353 , pp. 247-266
    • Adamowski, J.F.1
  • 2
    • 43149114256 scopus 로고    scopus 로고
    • An application of artificial intelligence for rainfall runoff modeling
    • Aytek, A, and Alp, M. 2008. An application of artificial intelligence for rainfall runoff modeling. J. Earth Syst. Sci., 117 (2):145–155.
    • (2008) J. Earth Syst. Sci. , vol.117 , Issue.2 , pp. 145-155
    • Aytek, A.1    Alp, M.2
  • 3
    • 39849091610 scopus 로고    scopus 로고
    • A genetic programming approach to suspended sediment sodeling
    • Aytek, A, and Kişi, O. 2008. A genetic programming approach to suspended sediment sodeling. J. Hydrol., 351:288–298.
    • (2008) J. Hydrol. , vol.351 , pp. 288-298
    • Aytek, A.1    Kişi, O.2
  • 5
  • 6
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three backpropagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu, HK, and Kişi, O. 2005. Flow prediction by three backpropagation techniques using k-fold partitioning of neural network training data. Nordic Hydrol., 36 (1):49–64.
    • (2005) Nordic Hydrol. , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kişi, O.2
  • 7
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu, HK, and Kişi, O. 2006. Methods to improve the neural network performance in suspended sediment estimation. J. Hydrol., 317:221–238.
    • (2006) J. Hydrol. , vol.317 , pp. 221-238
    • Cigizoglu, H.K.1    Kişi, O.2
  • 8
    • 85024532241 scopus 로고    scopus 로고
    • (1999). “Application of neural networks and genetic programming to rainfall runoff modeling.” D2K technical report 0699-1-1, Danish hydraulic institute, Denmark
    • Drecourt, JP. (1999). “Application of neural networks and genetic programming to rainfall runoff modeling.” D2K technical report 0699-1-1, Danish hydraulic institute, Denmark
    • Drecourt, J.P.1
  • 9
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: A new adaptive algorithm for solving problem
    • Ferreira, C. 2001. Gene expression programming:a new adaptive algorithm for solving problem. Complex Syst., 13 (2):87–129.
    • (2001) Complex Syst. , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 13
    • 85009570458 scopus 로고    scopus 로고
    • Velocity predictions in compound channels with vegetated flood plains using genetic programming
    • Harris, EL, Babovic, V, and Falconer, RA. 2003. Velocity predictions in compound channels with vegetated flood plains using genetic programming. Int. J. River Basin Manag., 1 (2):117–123.
    • (2003) Int. J. River Basin Manag. , vol.1 , Issue.2 , pp. 117-123
    • Harris, E.L.1    Babovic, V.2    Falconer, R.A.3
  • 14
    • 0030422315 scopus 로고    scopus 로고
    • Wilhite, D.A., Svoboda, M.D., and Smith, K.H. (1996). “Drought management: crisis vs management.” Proc. 1996 Int. Conf. Exposition on Natural Disaster Reduction, ACSE, Washington, DC, 371-372
    • Hayes, MJ. Wilhite, D.A., Svoboda, M.D., and Smith, K.H. (1996). “Drought management:crisis vs management.” Proc. 1996 Int. Conf. Exposition on Natural Disaster Reduction, ACSE, Washington, DC, 371-372
    • Hayes, M.J.1
  • 16
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inferences
    • Jang, JSR. 1993. ANFIS:Adaptive-network-based fuzzy inferences. IEEE Trans. Syst. Manag. Cybernetics, 23 (3):665–685.
    • (1993) IEEE Trans. Syst. Manag. Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 17
    • 0029273384 scopus 로고
    • Neuro fuzzy modeling and control
    • Jang, JSR, and Sun, CT. 1995. Neuro fuzzy modeling and control. Proc IEEE., 83:378–405.
    • (1995) Proc IEEE. , vol.83 , pp. 378-405
    • Jang, J.S.R.1    Sun, C.T.2
  • 19
    • 10244243705 scopus 로고    scopus 로고
    • Fuzzy logic model approaches to daily pan evaporation estimation in Western Turkey
    • Keskin, ME, Terzi, O, and Taylan, D. 2004. Fuzzy logic model approaches to daily pan evaporation estimation in Western Turkey. Hydrologic. Sci. J., 49 (6):1001–1010.
    • (2004) Hydrologic. Sci. J. , vol.49 , Issue.6 , pp. 1001-1010
    • Keskin, M.E.1    Terzi, O.2    Taylan, D.3
  • 20
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kişi, Ö. 2004. River flow modeling using artificial neural networks. ASCE J. Hydrol. Eng., 9 (1):60–63.
    • (2004) ASCE J. Hydrol. Eng. , vol.9 , Issue.1 , pp. 60-63
    • Kişi, Ö.1
  • 21
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using a neuro-fuzzy computing technique
    • Kişi, Ö. 2006. Daily pan evaporation modeling using a neuro-fuzzy computing technique. J. Hydrol., 329:636–646.
    • (2006) J. Hydrol. , vol.329 , pp. 636-646
    • Kişi, Ö.1
  • 22
    • 34547116654 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy computing technique for evapotranspiration estimation
    • Kişi, Ö, and Ozturk, O. 2007. Adaptive neuro-fuzzy computing technique for evapotranspiration estimation. ASCE J. Irrigat. Drain. Eng., 133 (4):368–379.
    • (2007) ASCE J. Irrigat. Drain. Eng. , vol.133 , Issue.4 , pp. 368-379
    • Kişi, Ö.1    Ozturk, O.2
  • 23
    • 48549096154 scopus 로고    scopus 로고
    • Constructing neural network sediment estimation models using a data-driven algorithm
    • Kişi, Ö. 2008. Constructing neural network sediment estimation models using a data-driven algorithm. Math. Comput. Simul., 79 (1):94–103.
    • (2008) Math. Comput. Simul. , vol.79 , Issue.1 , pp. 94-103
    • Kişi, Ö.1
  • 24
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kişi, Ö. 2009. Neural networks and wavelet conjunction model for intermittent streamflow forecasting. ASCE J. Hydrol. Eng., 14 (8):773–782.
    • (2009) ASCE J. Hydrol. Eng. , vol.14 , Issue.8 , pp. 773-782
    • Kişi, Ö.1
  • 25
    • 84857912130 scopus 로고    scopus 로고
    • Forecasting daily lake levels using artificial intelligence approaches
    • Kişi, Ö, Shiri, J, and Nikoofar, B. 2012. Forecasting daily lake levels using artificial intelligence approaches. Comput. Geosci., 41:169–180.
    • (2012) Comput. Geosci. , vol.41 , pp. 169-180
    • Kişi, Ö.1    Shiri, J.2    Nikoofar, B.3
  • 27
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani, EH, and Assilian, S. 1975. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Machine Stud., 7 (1):1–13.
    • (1975) Int. J. Man Machine Stud. , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 28
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minnes, AW, and Hall, MJ. 1996. Artificial neural networks as rainfall-runoff models. Hydrologic. Sci. J., 41 (3):399–418.
    • (1996) Hydrologic. Sci. J. , vol.41 , Issue.3 , pp. 399-418
    • Minnes, A.W.1    Hall, M.J.2
  • 29
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal, T, and Kişi, Ö. 2007. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol., 342:199–212.
    • (2007) J. Hydrol. , vol.342 , pp. 199-212
    • Partal, T.1    Kişi, Ö.2
  • 30
    • 85024575091 scopus 로고    scopus 로고
    • and McPhee, N.F. (2008). “Covariant parsimony pressure for genetic programming.” Technical Report CES-480, ISSN: 1744-8050
    • Poli, R. and McPhee, N.F. (2008). “Covariant parsimony pressure for genetic programming.” Technical Report CES-480, ISSN:1744-8050
    • Poli, R.1
  • 31
    • 0030150926 scopus 로고    scopus 로고
    • Reservoir operating rules with fuzzy programming
    • Russell, SO, and Campbell, PF. 1996. Reservoir operating rules with fuzzy programming. J. Water Resour. Plann. Manag., 122 (3):165–170.
    • (1996) J. Water Resour. Plann. Manag. , vol.122 , Issue.3 , pp. 165-170
    • Russell, S.O.1    Campbell, P.F.2
  • 32
    • 0032804627 scopus 로고    scopus 로고
    • A genetic programming approach to rainfall-runoff modeling
    • Savic, AD, Walters, AG, and Davidson, JW. 1999. A genetic programming approach to rainfall-runoff modeling. Water Resour. Manag., 13:219–231.
    • (1999) Water Resour. Manag. , vol.13 , pp. 219-231
    • Savic, A.D.1    Walters, A.G.2    Davidson, J.W.3
  • 33
    • 78149414268 scopus 로고    scopus 로고
    • Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model
    • Shiri, J, and Kişi, Ö. 2010. Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J. Hydrol., 394:486–493.
    • (2010) J. Hydrol. , vol.394 , pp. 486-493
    • Shiri, J.1    Kişi, Ö.2
  • 34
    • 80052542665 scopus 로고    scopus 로고
    • Comparison of genetic programming with neuro-nuzzy systems for predicting short-term water table depth fluctuations
    • Shiri, J, and Kişi, Ö. 2011a. Comparison of genetic programming with neuro-nuzzy systems for predicting short-term water table depth fluctuations. Comput. Geosci., 37 (10):1692–1701.
    • (2011) Comput. Geosci. , vol.37 , Issue.10 , pp. 1692-1701
    • Shiri, J.1    Kişi, Ö.2
  • 35
    • 79960111650 scopus 로고    scopus 로고
    • Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (South-Western Iran)
    • Shiri, J, and Kişi, Ö. 2011b. Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (South-Western Iran). ASCE J. Irrig. Drain. Eng., 137 (7):412–425.
    • (2011) ASCE J. Irrig. Drain. Eng. , vol.137 , Issue.7 , pp. 412-425
    • Shiri, J.1    Kişi, Ö.2
  • 36
    • 82455186243 scopus 로고    scopus 로고
    • Estimating daily pan evaporation from climatic data of the State of Illinois, USA using adaptive neuro-fuzzy inference system and artificial neural network
    • Shiri, J, Dierickx, W, Pour-Ali Baba, A, Nemati, S, and Ghorbani, MA. 2011a. Estimating daily pan evaporation from climatic data of the State of Illinois, USA using adaptive neuro-fuzzy inference system and artificial neural network. Hydrol. Res., 42 (6):491–502.
    • (2011) Hydrol. Res. , vol.42 , Issue.6 , pp. 491-502
    • Shiri, J.1    Dierickx, W.2    Pour-Ali Baba, A.3    Nemati, S.4    Ghorbani, M.A.5
  • 38
    • 0029416249 scopus 로고
    • Neural networks models of rainfall-runoff process
    • Smith, J, and Eli, RN. 1995. Neural networks models of rainfall-runoff process. J. Water Resour. Plann. Manag., 121 (6):499–508.
    • (1995) J. Water Resour. Plann. Manag. , vol.121 , Issue.6 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 39
    • 0032003006 scopus 로고    scopus 로고
    • Stream flow characterization and feature detection using a discrete wavelet transform
    • Smith, LC, Turcotte, DL, and Isacks, B. 1998. Stream flow characterization and feature detection using a discrete wavelet transform. Hydrologic. Proc., 12:233–249.
    • (1998) Hydrologic. Proc. , vol.12 , pp. 233-249
    • Smith, L.C.1    Turcotte, D.L.2    Isacks, B.3
  • 40
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, KP, Gosain, AK, and Ramasastri, KS. 2002. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrologic. Proc., 16:1325–1330.
    • (2002) Hydrologic. Proc. , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 41
    • 0242656262 scopus 로고    scopus 로고
    • Application of a neural network model in establishing a stage-discharge relationship for a tidal river
    • Supharatid, S. 2003. Application of a neural network model in establishing a stage-discharge relationship for a tidal river. Hydrologic. Proc., 17:3085–3099.
    • (2003) Hydrologic. Proc. , vol.17 , pp. 3085-3099
    • Supharatid, S.1
  • 42
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi, T, and Sugeno, M. 1985. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybernetics., 15 (1):116–132.
    • (1985) IEEE Trans. Syst. Man Cybernetics. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.