메뉴 건너뛰기




Volumn 1, Issue 9, 2016, Pages

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries

Author keywords

[No Author keywords available]

Indexed keywords

ANODES; COBALT COMPOUNDS; FAILURE (MECHANICAL); FRACTURE MECHANICS; GRAPHITE; GRAPHITE ELECTRODES; LITHIUM COMPOUNDS; MECHANICAL ALLOYING; MILLING (MACHINING); SILICON; SILICON BATTERIES;

EID: 85015306657     PISSN: None     EISSN: 20587546     Source Type: Journal    
DOI: 10.1038/nenergy.2016.113     Document Type: Article
Times cited : (620)

References (41)
  • 1
    • 79958028636 scopus 로고    scopus 로고
    • Prospective materialsand applications for Li secondary batteries
    • Jeong, G., Kim, Y.-U., Kim, H., Kim, Y.-J., Sohn, H.-J. Prospective materialsand applications for Li secondary batteries. Energy Environ. Sci. 4, 1986-2002 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 1986-2002
    • Jeong, G.1    Kim, Y.-U.2    Kim, H.3    Kim, Y.-J.4    Sohn, H.-J.5
  • 2
    • 84949217063 scopus 로고    scopus 로고
    • The energy-storage frontier: Lithium-ionbatteries and beyond
    • Crabtree, G., Kócs, E., Trahey, L. The energy-storage frontier: Lithium-ionbatteries and beyond. MRS Bull. 40, 1067-1078 (2015).
    • (2015) MRS Bull. , vol.40 , pp. 1067-1078
    • Crabtree, G.1    Kócs, E.2    Trahey, L.3
  • 3
    • 84867030978 scopus 로고    scopus 로고
    • Challenges facing lithium batteries and electrical double-layercapacitors
    • Choi, N. S., et al. Challenges facing lithium batteries and electrical double-layercapacitors. Angew. Chem. Int. Ed. 51, 9994-10024 (2012).
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 9994-10024
    • Choi, N.S.1
  • 4
    • 84863114260 scopus 로고    scopus 로고
    • Electrical energy storage fortransportationfiapproaching the limits of, going beyond, lithium-ionbatteries
    • Thackeray, M. M., Wolverton, C., Isaacs, E. D. Electrical energy storage fortransportationfiapproaching the limits of, going beyond, lithium-ionbatteries. Energy Environ. Sci. 5, 7854-7863 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 7854-7863
    • Thackeray, M.M.1    Wolverton, C.2    Isaacs, E.D.3
  • 5
    • 84878263181 scopus 로고    scopus 로고
    • Evolution of strategies for modern rechargeable batteries
    • Goodenough, J. B. Evolution of strategies for modern rechargeable batteries.Acc. Chem. Res. 46, 1053-1061 (2013).
    • (2013) Acc. Chem. Res. , vol.46 , pp. 1053-1061
    • Goodenough, J.B.1
  • 6
    • 80053023974 scopus 로고    scopus 로고
    • Electrochemical energy storage to power the 21stcentury
    • Rolison, D. R., Nazar, L. F. Electrochemical energy storage to power the 21stcentury. MRS Bull. 36, 486-493 (2011).
    • (2011) MRS Bull. , vol.36 , pp. 486-493
    • Rolison, D.R.1    Nazar, L.F.2
  • 7
    • 77956345139 scopus 로고    scopus 로고
    • A review of the electrochemical performance of alloy anodes forlithium-ion batteries
    • Zhang, W. J. A review of the electrochemical performance of alloy anodes forlithium-ion batteries. J. Power Sources 196, 13-24 (2011).
    • (2011) J. Power Sources , vol.196 , pp. 13-24
    • Zhang, W.J.1
  • 8
    • 84916608418 scopus 로고    scopus 로고
    • Alloy negative electrodes for Li-ion batteries
    • Obrovac, M. N., Chevrier, V. L. Alloy negative electrodes for Li-ion batteries.Chem. Rev. 114, 11444-11502 (2014).
    • (2014) Chem. Rev. , vol.114 , pp. 11444-11502
    • Obrovac, M.N.1    Chevrier, V.L.2
  • 9
    • 84896396569 scopus 로고    scopus 로고
    • High-capacity anode materials for lithium-ion batteries:choice of elements and structures for active particles
    • Nitta, N., Yushin, G. High-capacity anode materials for lithium-ion batteries:choice of elements and structures for active particles. Part. Part. Syst. Charact.31, 317-336 (2014).
    • (2014) Part. Part. Syst. Charact. , vol.31 , pp. 317-336
    • Nitta, N.1    Yushin, G.2
  • 10
    • 2342577530 scopus 로고    scopus 로고
    • Structural changes in silicon anodes duringlithium insertion/extraction
    • Obrovac, M. N., Christensen, L. Structural changes in silicon anodes duringlithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93-A96 (2004).
    • (2004) Electrochem. Solid-State Lett. , vol.7 , pp. A93-A96
    • Obrovac, M.N.1    Christensen, L.2
  • 11
    • 84884907143 scopus 로고    scopus 로고
    • 25th anniversary article:understanding the lithiation of silicon and other alloying anodes forlithium-ion batteries
    • Mcdowell, M. T., Lee, S.W., Nix, W. D., Cui, Y. 25th anniversary article:understanding the lithiation of silicon and other alloying anodes forlithium-ion batteries. Adv. Mater. 25, 4966-4985 (2013).
    • (2013) Adv. Mater. , vol.25 , pp. 4966-4985
    • McDowell, M.T.1    Lee, S.W.2    Nix, W.D.3    Cui, Y.4
  • 12
    • 84940792835 scopus 로고    scopus 로고
    • Considering critical factors of Li-richcathode and Si anode materials for practical Li-ion cell applications
    • Ko, M., Oh, P., Chae, S., Cho, W., Cho, J. Considering critical factors of Li-richcathode and Si anode materials for practical Li-ion cell applications. Small 11, 4058-4073 (2015).
    • (2015) Small , vol.11 , pp. 4058-4073
    • Ko, M.1    Oh, P.2    Chae, S.3    Cho, W.4    Cho, J.5
  • 13
    • 84867672114 scopus 로고    scopus 로고
    • Designing nanostructured Si anodes for high energy lithiumion batteries
    • Wu, H., Cui, Y. Designing nanostructured Si anodes for high energy lithiumion batteries. Nano Today 7, 414-429 (2012).
    • (2012) Nano Today , vol.7 , pp. 414-429
    • Wu, H.1    Cui, Y.2
  • 14
    • 84862805736 scopus 로고    scopus 로고
    • Stable cycling of double-walled silicon nanotube batteryanodes through solid-electrolyte interphase control
    • Wu, H., et al. Stable cycling of double-walled silicon nanotube batteryanodes through solid-electrolyte interphase control. Nature Nanotech. 7, 309-314 (2012).
    • (2012) Nature Nanotech. , vol.7 , pp. 309-314
    • Wu, H.1
  • 15
    • 84862281347 scopus 로고    scopus 로고
    • A yolk-shell design for stabilized and scalable Li-ion battery alloyanodes
    • Liu, N., et al. A yolk-shell design for stabilized and scalable Li-ion battery alloyanodes. Nano Lett. 12, 3315-3321 (2012).
    • (2012) Nano Lett. , vol.12 , pp. 3315-3321
    • Liu, N.1
  • 16
    • 84925682633 scopus 로고    scopus 로고
    • Nonfilling carbon coating of porous silicon micrometer-sizedparticles for high-performance lithium battery anodes
    • Lu, Z., et al. Nonfilling carbon coating of porous silicon micrometer-sizedparticles for high-performance lithium battery anodes. ACS Nano 9, 2540-2547 (2015).
    • (2015) ACS Nano , vol.9 , pp. 2540-2547
    • Lu, Z.1
  • 17
    • 84895920205 scopus 로고    scopus 로고
    • A pomegranate-inspired nanoscale design for large-volumechangelithium battery anodes
    • Liu, N., et al. A pomegranate-inspired nanoscale design for large-volumechangelithium battery anodes. Nature Nanotech. 9, 187-192 (2014).
    • (2014) Nature Nanotech. , vol.9 , pp. 187-192
    • Liu, N.1
  • 18
    • 84863629371 scopus 로고    scopus 로고
    • Crumpled graphene-encapsulated Si nanoparticles for lithium ionbattery anodes
    • Luo, J., et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ionbattery anodes. J. Phys. Chem. Lett. 3, 1824-1829 (2012).
    • (2012) J. Phys. Chem. Lett. , vol.3 , pp. 1824-1829
    • Luo, J.1
  • 19
    • 85079544577 scopus 로고    scopus 로고
    • Growth of conformal graphene cages on micrometre-sized siliconparticles as stable battery anodes
    • Li, Y., et al. Growth of conformal graphene cages on micrometre-sized siliconparticles as stable battery anodes. Nature Energy 1, 15029 (2016).
    • (2016) Nature Energy , vol.1 , pp. 15029
    • Li, Y.1
  • 20
    • 84872267695 scopus 로고    scopus 로고
    • High-performance porous silicon monoxide anodessynthesized via metal-assisted chemical etching
    • Lee, J.-I., Park, S. High-performance porous silicon monoxide anodessynthesized via metal-assisted chemical etching. Nano Energy 2, 146-152 (2013).
    • (2013) Nano Energy , vol.2 , pp. 146-152
    • Lee, J.-I.1    Park, S.2
  • 21
    • 84859186598 scopus 로고    scopus 로고
    • Stabilized cycling performance ofsilicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries
    • Song, J.-W., Nguyen, C. C., Song, S.-W. Stabilized cycling performance ofsilicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries.RSC Adv. 2, 2003-2009 (2012).
    • (2012) RSC Adv. , vol.2 , pp. 2003-2009
    • Song, J.-W.1    Nguyen, C.C.2    Song, S.-W.3
  • 23
    • 84908222684 scopus 로고    scopus 로고
    • Electrochemical behavior of SiOx anodes with variation ofoxygen ratio for Li-ion batteries
    • Suh, S. S., et al. Electrochemical behavior of SiOx anodes with variation ofoxygen ratio for Li-ion batteries. Electrochim. Acta 148, 111-117 (2014).
    • (2014) Electrochim. Acta , vol.148 , pp. 111-117
    • Suh, S.S.1
  • 24
    • 34548403342 scopus 로고    scopus 로고
    • Practical silicon-based composite anodes forlithium-ion batteries: Fundamental and technological features
    • Dimov, N., Xia, Y., Yoshio, M. Practical silicon-based composite anodes forlithium-ion batteries: Fundamental and technological features. J. Power Sources171, 886-893 (2007).
    • (2007) J. Power Sources , vol.171 , pp. 886-893
    • Dimov, N.1    Xia, Y.2    Yoshio, M.3
  • 25
    • 84916622694 scopus 로고    scopus 로고
    • High energy density calendered Sialloy/graphite anodes
    • Du, Z., Dunlap, R. A., Obrovac, M. N. High energy density calendered Sialloy/graphite anodes. J. Electrochem. Soc. 161, A1698-A1705 (2014).
    • (2014) J. Electrochem. Soc. , vol.161 , pp. A1698-A1705
    • Du, Z.1    Dunlap, R.A.2    Obrovac, M.N.3
  • 26
    • 77953136535 scopus 로고    scopus 로고
    • Sifigraphite composites as anode materials for lithium secondarybatteries
    • Jo, Y. N., et al. Sifigraphite composites as anode materials for lithium secondarybatteries. J. Power Sources 195, 6031-6036 (2010).
    • (2010) J. Power Sources , vol.195 , pp. 6031-6036
    • Jo, Y.N.1
  • 27
    • 37349022911 scopus 로고    scopus 로고
    • Sphericalsilicon/graphite/carbon composites as anode material for lithium-ion batteries
    • Lee, J.-H., Kim, W.-J., Kim, J.-Y., Lim, S.-H., Lee, S.-M. Sphericalsilicon/graphite/carbon composites as anode material for lithium-ion batteries.J. Power Sources 176, 353-358 (2008).
    • (2008) J. Power Sources , vol.176 , pp. 353-358
    • Lee, J.-H.1    Kim, W.-J.2    Kim, J.-Y.3    Lim, S.-H.4    Lee, S.-M.5
  • 28
    • 84886539449 scopus 로고    scopus 로고
    • Facile spray-drying/pyrolysis synthesis of corefishell structuregraphite/silicon-porous carbon composite as a superior anode for Li-ionbatteries
    • Li, M., et al. Facile spray-drying/pyrolysis synthesis of corefishell structuregraphite/silicon-porous carbon composite as a superior anode for Li-ionbatteries. J. Power Sources 248, 721-728 (2014).
    • (2014) J. Power Sources , vol.248 , pp. 721-728
    • Li, M.1
  • 29
    • 80052382509 scopus 로고    scopus 로고
    • Nano Si-coated graphitecomposite anode synthesized by semi-mass production ball milling for lithiumsecondary batteries
    • Yoon, Y. S., Jee, S. H., Lee, S. H., Nam, S. C. Nano Si-coated graphitecomposite anode synthesized by semi-mass production ball milling for lithiumsecondary batteries. Surf. Coat. Technol. 206, 553-558 (2011).
    • (2011) Surf. Coat. Technol. , vol.206 , pp. 553-558
    • Yoon, Y.S.1    Jee, S.H.2    Lee, S.H.3    Nam, S.C.4
  • 30
    • 36148937857 scopus 로고    scopus 로고
    • Silicon/graphite nanocomposite electrode prepared bylow pressure chemical vapor deposition
    • Alias, M., et al. Silicon/graphite nanocomposite electrode prepared bylow pressure chemical vapor deposition. J. Power Sources 174, 900-904 (2007).
    • (2007) J. Power Sources , vol.174 , pp. 900-904
    • Alias, M.1
  • 31
    • 33845622840 scopus 로고    scopus 로고
    • Nano-A nd bulk-silicon-basedinsertion anodes for lithium-ion secondary cells
    • Kasavajjula, U., Wang, C. S., Appleby, A. J. Nano-A nd bulk-silicon-basedinsertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003-1039 (2007).
    • (2007) J. Power Sources , vol.163 , pp. 1003-1039
    • Kasavajjula, U.1    Wang, C.S.2    Appleby, A.J.3
  • 32
    • 34547487012 scopus 로고    scopus 로고
    • Towards a fundamental understanding of the improvedelectrochemical performance of silicon-carbon composites
    • Saint, J., et al. Towards a fundamental understanding of the improvedelectrochemical performance of silicon-carbon composites. Adv. Funct. Mater.17, 1765-1774 (2007).
    • (2007) Adv. Funct. Mater. , vol.17 , pp. 1765-1774
    • Saint, J.1
  • 33
    • 0036961564 scopus 로고    scopus 로고
    • Carbon-coated Si as a lithium-ion battery anode material
    • Yoshio, M., et al. Carbon-coated Si as a lithium-ion battery anode material.J. Electrochem. Soc. 149, A1598-A1603 (2002).
    • (2002) J. Electrochem. Soc. , vol.149 , pp. A1598-A1603
    • Yoshio, M.1
  • 34
    • 3042636172 scopus 로고    scopus 로고
    • Improvement of natural graphite as a lithium-ion batteryanode material, from raw flake to carbon-coated sphere
    • Yoshio, M., et al. Improvement of natural graphite as a lithium-ion batteryanode material, from raw flake to carbon-coated sphere. J. Mater. Chem. 14, 1754-1758 (2004).
    • (2004) J. Mater. Chem. , vol.14 , pp. 1754-1758
    • Yoshio, M.1
  • 35
    • 33750142585 scopus 로고    scopus 로고
    • Optimized structure ofsilicon/carbon/graphite composites as an anode material for Li-ion batteries
    • Uono, H., Kim, B.-C., Fuse, T., Ue, M., Yamaki, J.-I. Optimized structure ofsilicon/carbon/graphite composites as an anode material for Li-ion batteries.J. Electrochem. Soc. 153, A1708-A1713 (2006).
    • (2006) J. Electrochem. Soc. , vol.153 , pp. A1708-A1713
    • Uono, H.1    Kim, B.-C.2    Fuse, T.3    Ue, M.4    Yamaki, J.-I.5
  • 36
    • 84878040235 scopus 로고    scopus 로고
    • Efiect of carbon matrix on electrochemical performance of Si/Ccomposites for use in anodes of lithium secondary batteries
    • Lee, E. H., et al. Efiect of carbon matrix on electrochemical performance of Si/Ccomposites for use in anodes of lithium secondary batteries. Bull. KoreanChem. Soc. 34, 1435-1440 (2013).
    • (2013) Bull. KoreanChem. Soc. , vol.34 , pp. 1435-1440
    • Lee, E.H.1
  • 37
    • 84933504753 scopus 로고    scopus 로고
    • Kinetics and fracture resistance of lithiated silicon nanopillarpairs controlled by their mechanical interaction
    • Lee, S.W., et al. Kinetics and fracture resistance of lithiated silicon nanopillarpairs controlled by their mechanical interaction. Nature Commun. 6, 7533 (2015).
    • (2015) Nature Commun. , vol.6 , pp. 7533
    • Lee, S.W.1
  • 38
    • 79958851687 scopus 로고    scopus 로고
    • Ultrafast electrochemical lithiation of individual Si nanowireanodes.
    • Liu, X. H., et al. Ultrafast electrochemical lithiation of individual Si nanowireanodes. Nano Lett. 11, 2251-2258 (2011).
    • (2011) Nano Lett. , vol.11 , pp. 2251-2258
    • Liu, X.H.1
  • 39
    • 84873669437 scopus 로고    scopus 로고
    • In situ TEM of two-phase lithiation of amorphous siliconnanospheres
    • Mcdowell, M. T., et al. In situ TEM of two-phase lithiation of amorphous siliconnanospheres. Nano Lett. 13, 758-764 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 758-764
    • McDowell, M.T.1
  • 40
    • 77950301248 scopus 로고    scopus 로고
    • In situ measurements of stress evolution in silicon thin films duringelectrochemical lithiation and delithiation
    • Sethuraman, V. A., Chon, M. J., Shimshak, M., Srinivasan, V., Guduru, P. R.In situ measurements of stress evolution in silicon thin films duringelectrochemical lithiation and delithiation. J. Power Sources 195, 5062-5066 (2010).
    • (2010) J. Power Sources , vol.195 , pp. 5062-5066
    • Sethuraman, V.A.1    Chon, M.J.2    Shimshak, M.3    Srinivasan, V.4    Guduru, P.R.5
  • 41
    • 0030399137 scopus 로고    scopus 로고
    • Smooth operators: Carbon-graphite materials
    • Boylan, J. Smooth operators: Carbon-graphite materials. Mater.World 4, 707-708 (1996).
    • (1996) Mater.World , vol.4 , pp. 707-708
    • Boylan, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.