메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

Author keywords

[No Author keywords available]

Indexed keywords

LITHIUM ION; NANOMATERIAL; SILICON;

EID: 84933504753     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms8533     Document Type: Article
Times cited : (117)

References (40)
  • 1
    • 37849002504 scopus 로고    scopus 로고
    • High-performance lithium battery anodes using silicon nanowires
    • Chan C. K., et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31-35 (2008
    • (2008) Nat. Nanotech , vol.3 , pp. 31-35
    • Chan, C.K.1
  • 2
    • 84867672114 scopus 로고    scopus 로고
    • Designing nanostructured Si anodes for high energy lithium ion batteries
    • Wu H. & Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414-429 (2012
    • (2012) Nano Today , vol.7 , pp. 414-429
    • Wu, H.1    Cui, Y.2
  • 3
    • 41849146772 scopus 로고    scopus 로고
    • Materials challenges facing electrical energy storage
    • Whittingham M. S. Materials challenges facing electrical energy storage. MRS Bull. 33, 411-421 (2008
    • (2008) MRS Bull , vol.33 , pp. 411-421
    • Whittingham, M.S.1
  • 4
    • 84884907143 scopus 로고    scopus 로고
    • Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries
    • McDowell M. T., Lee S. W., Nix W. D. & Cui Y. Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966-4985 (2013
    • (2013) Adv. Mater , vol.25 , pp. 4966-4985
    • McDowell, M.T.1    Lee, S.W.2    Nix, W.D.3    Cui, Y.4
  • 5
    • 33845622840 scopus 로고    scopus 로고
    • Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
    • Kasavajjula U., Wang C. & Appleby a. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003-1039 (2007
    • (2007) J. Power Sources , vol.163 , pp. 1003-1039
    • Kasavajjula, U.1    Wang, C.2    Appleby, A.J.3
  • 6
    • 84863229332 scopus 로고    scopus 로고
    • Fracture of crystalline silicon nanopillars during electrochemical lithium insertion
    • Lee S. W., McDowell M. T., Berla L. a., Nix W. D. & Cui Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl Acad. Sci. USA 109, 4080-4085 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 4080-4085
    • Lee, S.W.1    McDowell, M.T.2    Berla, L.A.3    Nix, W.D.4    Cui, Y.5
  • 7
    • 84862805736 scopus 로고    scopus 로고
    • Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
    • Wu H., et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotech. 7, 310-315 (2012
    • (2012) Nat. Nanotech , vol.7 , pp. 310-315
    • Wu, H.1
  • 8
    • 84862281347 scopus 로고    scopus 로고
    • A yolk-shell design for stabilized and scalable li-ion battery alloy anodes
    • Liu N., et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315-3321 (2012
    • (2012) Nano Lett , vol.12 , pp. 3315-3321
    • Liu, N.1
  • 9
    • 84895920205 scopus 로고    scopus 로고
    • A pomegranate-inspired nanoscale design for large-volumechange lithium battery anodes
    • Liu N., et al. A pomegranate-inspired nanoscale design for large-volumechange lithium battery anodes. Nat. Nanotech. 9, 187-192 (2014
    • (2014) Nat. Nanotech , vol.9 , pp. 187-192
    • Liu, N.1
  • 10
    • 77950021498 scopus 로고    scopus 로고
    • High-performance lithium-ion anodes using a hierarchical bottom-up approach
    • Magasinki A., et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353-358 (2010
    • (2010) Nat. Mater , vol.9 , pp. 353-358
    • Magasinki, A.1
  • 11
    • 79960213953 scopus 로고    scopus 로고
    • Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
    • Yao Y., et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949-2954 (2011
    • (2011) Nano Lett , vol.11 , pp. 2949-2954
    • Yao, Y.1
  • 12
    • 84892156995 scopus 로고    scopus 로고
    • Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon
    • Ge M., et al. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 14, 261-268 (2014
    • (2014) Nano Lett , vol.14 , pp. 261-268
    • Ge, M.1
  • 13
    • 77953128331 scopus 로고    scopus 로고
    • Elastic softening of amorphous and crystalline li-si phases with increasing li concentration: A first-principles study
    • Shenoy V. B., Johari P. & Qi Y. Elastic softening of amorphous and crystalline Li-Si Phases with increasing Li concentration: A first-principles study. J. Power Sources 195, 6825-6830 (2010
    • (2010) J. Power Sources , vol.195 , pp. 6825-6830
    • Shenoy, V.B.1    Johari, P.2    Qi, Y.3
  • 14
    • 79960253438 scopus 로고    scopus 로고
    • Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study
    • Zhao K., et al. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. Nano Lett. 11, 2962-2967 (2011
    • (2011) Nano Lett , vol.11 , pp. 2962-2967
    • Zhao, K.1
  • 15
    • 77950301248 scopus 로고    scopus 로고
    • In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation
    • Sethuraman V. a., Chon M. J., Shimshak M., Srinivasan V. & Guduru P. R. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195, 5062-5066 (2010
    • (2010) J. Power Sources , vol.195 , pp. 5062-5066
    • Sethuraman, V.A.1    Chon, M.J.2    Shimshak, M.3    Srinivasan, V.4    Guduru, P.R.5
  • 16
    • 79959332058 scopus 로고    scopus 로고
    • Youngs modulus of polycrystalline li22si5
    • Ratchford J. B., et al. Youngs modulus of polycrystalline Li22Si5. J. Power Sources 196, 7747-7749 (2011
    • (2011) J. Power Sources , vol.196 , pp. 7747-7749
    • Ratchford, J.B.1
  • 17
    • 79960722704 scopus 로고    scopus 로고
    • Ex-situ depth-sensing indentation measurements of electrochemically produced si-li alloy films
    • Hertzberg B., Benson J. & Yushin G. Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films. Electrochem. Commun. 13, 818-821 (2011
    • (2011) Electrochem. Commun , vol.13 , pp. 818-821
    • Hertzberg, B.1    Benson, J.2    Yushin, G.3
  • 18
    • 84887848448 scopus 로고    scopus 로고
    • Measurements of the fracture energy of lithiated silicon electrodes of li-ion batteries
    • Pharr M., Suo Z. & Vlassak J. J. Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. Nano Lett. 13, 5570-5577 (2013
    • (2013) Nano Lett , vol.13 , pp. 5570-5577
    • Pharr, M.1    Suo, Z.2    Vlassak, J.J.3
  • 19
    • 77950380915 scopus 로고    scopus 로고
    • Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems
    • Huggins R. A. & Nix W. D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57-63 (2000
    • (2000) Ionics , vol.6 , pp. 57-63
    • Huggins, R.A.1    Nix, W.D.2
  • 20
    • 84893156503 scopus 로고    scopus 로고
    • Microscopic model for fracture of crystalline Si nanopillars during lithiation
    • Ryu I., Lee S. W., Gao H., Cui Y. & Nix W. D. Microscopic model for fracture of crystalline Si nanopillars during lithiation. J. Power Sources 255, 274-282 (2014
    • (2014) J. Power Sources , vol.255 , pp. 274-282
    • Ryu, I.1    Lee, S.W.2    Gao, H.3    Cui, Y.4    Nix, W.D.5
  • 21
    • 84863116549 scopus 로고    scopus 로고
    • Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries
    • Zhao K., et al. Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries. J. Electrochem. Soc. 159, A238-A243 (2012
    • (2012) J. Electrochem. Soc , vol.159 , pp. A238-A243
    • Zhao, K.1
  • 22
    • 84905585907 scopus 로고    scopus 로고
    • A chemo-mechanical model of lithiation in silicon
    • Yang H., et al. A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 70, 349-361 (2014
    • (2014) J. Mech. Phys. Solids , vol.70 , pp. 349-361
    • Yang, H.1
  • 23
    • 84866340372 scopus 로고    scopus 로고
    • Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries
    • Pharr M., Zhao K., Wang X., Suo Z. & Vlassak J. J. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. Nano Lett. 12, 5039-5047 (2012
    • (2012) Nano Lett , vol.12 , pp. 5039-5047
    • Pharr, M.1    Zhao, K.2    Wang, X.3    Suo, Z.4    Vlassak, J.J.5
  • 24
    • 80051796697 scopus 로고    scopus 로고
    • Size-dependent fracture of Si nanowire battery anodes
    • Ryu I., Choi J. W., Cui Y. & Nix W. D. Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59, 1717-1730 (2011
    • (2011) J. Mech. Phys. Solids , vol.59 , pp. 1717-1730
    • Ryu, I.1    Choi, J.W.2    Cui, Y.3    Nix, W.D.4
  • 26
    • 78449283976 scopus 로고    scopus 로고
    • Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission
    • Rhodes K., Dudney N., Lara-Curzio E. & Daniel C. Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission. J. Electrochem. Soc. 157, A1354-A1360 (2010
    • (2010) J. Electrochem. Soc , vol.157 , pp. A1354-A1360
    • Rhodes, K.1    Dudney, N.2    Lara-Curzio, E.3    Daniel, C.4
  • 27
    • 33846996042 scopus 로고    scopus 로고
    • An in situ x-ray diffraction study of the reaction of li with crystalline si
    • Li J. & Dahn J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156-A161 (2007
    • (2007) J. Electrochem. Soc , vol.154 , pp. A156-A161
    • Li, J.1    Dahn, J.R.2
  • 28
    • 79961096465 scopus 로고    scopus 로고
    • Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon
    • Chon M. J., Sethuraman V. A., McCormick A., Srinivasan V. & Guduru P. R. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107, 045503 (2011
    • (2011) Phys. Rev. Lett , vol.107 , pp. 045503
    • Chon, M.J.1    Sethuraman, V.A.2    McCormick, A.3    Srinivasan, V.4    Guduru, P.R.5
  • 29
    • 79959992488 scopus 로고    scopus 로고
    • Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: Models for high energy density lithium-ion battery anodes
    • Goldman J. L., Long B. R., Gewirth A. a. & Nuzzo R. G. Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: models for high energy density lithium-ion battery anodes. Adv. Funct. Mater. 21, 2412-2422 (2011
    • (2011) Adv. Funct. Mater , vol.21 , pp. 2412-2422
    • Goldman, J.L.1    Long, B.R.2    Gewirth, A.A.3    Nuzzo, R.G.4
  • 30
    • 79960218035 scopus 로고    scopus 로고
    • Anomalous shape changes of silicon nanopillars by electrochemical lithiation
    • Lee S. W., McDowell M. T., Choi J. W. & Cui Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034-3039 (2011
    • (2011) Nano Lett , vol.11 , pp. 3034-3039
    • Lee, S.W.1    McDowell, M.T.2    Choi, J.W.3    Cui, Y.4
  • 31
    • 84876474907 scopus 로고    scopus 로고
    • Reaction front evolution during electrochemical lithiation of crystalline silicon nanopillars
    • Lee S. W., Berla L. a., McDowell M. T., Nix W. D. & Cui Y. Reaction front evolution during electrochemical lithiation of crystalline silicon nanopillars. Isr. J. Chem. 52, 1118-1123 (2012
    • (2012) Isr. J. Chem , vol.52 , pp. 1118-1123
    • Lee, S.W.1    Berla, L.A.2    McDowell, M.T.3    Nix, W.D.4    Cui, Y.5
  • 32
    • 80052794879 scopus 로고    scopus 로고
    • Probing the lithium ion storage properties of positively and negatively carved silicon
    • Nam S. H., et al. Probing the lithium ion storage properties of positively and negatively carved silicon. Nano Lett. 11, 3656-3662 (2011
    • (2011) Nano Lett , vol.11 , pp. 3656-3662
    • Nam, S.H.1
  • 33
    • 84896789213 scopus 로고    scopus 로고
    • Robustness of amorphous silicon during the initial lithiation/delithiation cycle
    • Berla L. a., Lee S. W., Ryu I., Cui Y. & Nix W. D. Robustness of amorphous silicon during the initial lithiation/delithiation cycle. J. Power Sources 258, 253-259 (2014
    • (2014) J. Power Sources , vol.258 , pp. 253-259
    • Berla, L.A.1    Lee, S.W.2    Ryu, I.3    Cui, Y.4    Nix, W.D.5
  • 34
    • 80053298772 scopus 로고    scopus 로고
    • In situ tem electrochemistry of anode materials in lithium ion batteries
    • Liu X. H. & Huang J. Y. In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci. 4, 3844-3860 (2011
    • (2011) Energy Environ. Sci , vol.4 , pp. 3844-3860
    • Liu, X.H.1    Huang, J.Y.2
  • 35
    • 84869463671 scopus 로고    scopus 로고
    • Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy
    • McDowell M. T., et al. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 6034-6041 (2012
    • (2012) Adv. Mater , vol.24 , pp. 6034-6041
    • McDowell, M.T.1
  • 36
    • 84869081646 scopus 로고    scopus 로고
    • In situ atomic-scale imaging of electrochemical lithiation in silicon
    • Liu X. H., et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotech. 7, 749-756 (2012
    • (2012) Nat. Nanotech , vol.7 , pp. 749-756
    • Liu, X.H.1
  • 37
    • 79958851687 scopus 로고    scopus 로고
    • Ultrafast electrochemical lithiation of individual si nanowire anodes
    • Liu X. H., et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11, 2251-2258 (2011
    • (2011) Nano Lett , vol.11 , pp. 2251-2258
    • Liu, X.H.1
  • 38
    • 84863229783 scopus 로고    scopus 로고
    • Size-dependent fracture of silicon nanoparticles during lithiation
    • Liu X. H., et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522-1531 (2012
    • (2012) ACS Nano , vol.6 , pp. 1522-1531
    • Liu, X.H.1
  • 39
    • 84873669437 scopus 로고    scopus 로고
    • In situ TEM of two-phase lithiation of amorphous silicon nanospheres
    • McDowell M. T., et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758-764 (2013
    • (2013) Nano Lett , vol.13 , pp. 758-764
    • McDowell, M.T.1
  • 40
    • 0037465265 scopus 로고    scopus 로고
    • Electrochemicallydriven solid-state amorphization in lithium-silicon alloys and implications for lithium storage
    • Limthongkul P., Jang Y.-I., Dudney N. J. & Chiang Y.-M. Electrochemicallydriven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51, 1103-1113 (2003
    • (2003) Acta Mater , vol.51 , pp. 1103-1113
    • Limthongkul, P.1    Jang, Y.-I.2    Dudney, N.J.3    Chiang, Y.-M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.