메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 338-346

Social influence based clustering of heterogeneous information networks

Author keywords

Graph clustering; Heterogeneous network; Social influence

Indexed keywords

DATA MINING; HETEROGENEOUS NETWORKS; INFORMATION SERVICES; ITERATIVE METHODS; MATHEMATICAL PROGRAMMING; RAPID THERMAL ANNEALING;

EID: 85015290085     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2487640     Document Type: Conference Paper
Times cited : (114)

References (28)
  • 1
    • 33747172362 scopus 로고    scopus 로고
    • Maximizing the spread of influence through a social network
    • D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD, 2003.
    • (2003) KDD
    • Kempe, D.1    Kleinberg, J.2    Tardos, E.3
  • 2
    • 0035789667 scopus 로고    scopus 로고
    • Mining the network value of customers
    • P. Domingos and M. Richardson. Mining the network value of customers. In KDD, pages 57-66, 2001.
    • (2001) KDD , pp. 57-66
    • Domingos, P.1    Richardson, M.2
  • 3
    • 67650323503 scopus 로고    scopus 로고
    • Mining social networks using heat diffusion processes for marketing candidates selection
    • H. Ma, H. Yang, M. R. Lyu, and I. King. Mining social networks using heat diffusion processes for marketing candidates selection. In CIKM, pages 233-242, 2008.
    • (2008) CIKM , pp. 233-242
    • Ma, H.1    Yang, H.2    Lyu, M.R.3    King, I.4
  • 5
    • 84866021278 scopus 로고    scopus 로고
    • Information diffusion and external influence in networks
    • S. Myers, C. Zhu, J. Leskovec. Information Diffusion and External Influence in Networks. In KDD, pages 33-41, 2012.
    • (2012) KDD , pp. 33-41
    • Myers, S.1    Zhu, C.2    Leskovec, J.3
  • 6
    • 84880884400 scopus 로고    scopus 로고
    • Probabilistic classification and clustering in relational data
    • B. Taskar, E. Segal, D. Koller. Probabilistic Classification and Clustering in Relational Data. In IJCAI, 2001.
    • (2001) IJCAI
    • Taskar, B.1    Segal, E.2    Koller, D.3
  • 7
    • 35248843375 scopus 로고    scopus 로고
    • Community mining from multi-relational networks
    • D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Community mining from multi-relational networks. In PKDD, 2005.
    • (2005) PKDD
    • Cai, D.1    Shao, Z.2    He, X.3    Yan, X.4    Han, J.5
  • 8
    • 70350679112 scopus 로고    scopus 로고
    • Combining link and content for community detection: A discriminative approach
    • T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community detection: A discriminative approach. In KDD, pages 927-936, 2009.
    • (2009) KDD , pp. 927-936
    • Yang, T.1    Jin, R.2    Chi, Y.3    Zhu, S.4
  • 9
    • 80052691243 scopus 로고    scopus 로고
    • Ranking-based classification of heterogeneous information networks
    • M. Ji, J. Han, and M. Danilevsky. Ranking-based classification of heterogeneous information networks. In KDD, pages 1298-1306, 2011.
    • (2011) KDD , pp. 1298-1306
    • Ji, M.1    Han, J.2    Danilevsky, M.3
  • 10
    • 84866009688 scopus 로고    scopus 로고
    • Query-driven discovery of semantically similar substructures in heterogeneous networks
    • X. Yu, Y. Sun, P. Zhao, and J. Han. Query-driven discovery of semantically similar substructures in heterogeneous networks. In KDD, pages 1500-1503, 2012.
    • (2012) KDD , pp. 1500-1503
    • Yu, X.1    Sun, Y.2    Zhao, P.3    Han, J.4
  • 11
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. In TPAMI, 22(8), pages 888-905, 2000.
    • (2000) TPAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 12
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. In Phys. Rev. E 69, 026113, 2004.
    • (2004) Phys. Rev. E , vol.69 , pp. 026113
    • Newman, M.E.J.1    Girvan, M.2
  • 13
    • 36949010345 scopus 로고    scopus 로고
    • Scan: A structural clustering algorithm for networks
    • X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: A structural clustering algorithm for networks. In KDD, 2007.
    • (2007) KDD
    • Xu, X.1    Yuruk, N.2    Feng, Z.3    Schweiger, T.A.J.4
  • 14
    • 70350647698 scopus 로고    scopus 로고
    • Scalable graph clustering using stochastic flows: Applications to community discovery
    • V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic flows: Applications to community discovery. In KDD, 2009.
    • (2009) KDD
    • Satuluri, V.1    Parthasarathy, S.2
  • 15
    • 80052767847 scopus 로고    scopus 로고
    • Scalable discovery of best clusters on large graphs
    • K. Macropol and A. Singh. Scalable discovery of best clusters on large graphs. In PVLDB, 3(1), 693-702, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 693-702
    • Macropol, K.1    Singh, A.2
  • 16
    • 57149123533 scopus 로고    scopus 로고
    • Efficient aggregation for graph summarization
    • Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summarization. In SIGMOD, 567-580, 2008.
    • (2008) SIGMOD , pp. 567-580
    • Tian, Y.1    Hankins, R.A.2    Patel, J.M.3
  • 17
    • 77952750771 scopus 로고    scopus 로고
    • Discovery-driven graph summarization
    • N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph summarization. In ICDE, pages 880-891, 2010.
    • (2010) ICDE , pp. 880-891
    • Zhang, N.1    Tian, Y.2    Patel, J.M.3
  • 18
    • 84857166128 scopus 로고    scopus 로고
    • Entropy-based graph clustering: Application to biological and social networks
    • E. C. Kenley and Y.-R. Cho. Entropy-based graph clustering: Application to biological and social networks. In ICDM'11.
    • ICDM'11.
    • Kenley, E.C.1    Cho, Y.-R.2
  • 19
    • 36849029834 scopus 로고    scopus 로고
    • A spectral clustering approach to optimally combining numericalvectors with a modular network
    • M. Shiga, I. Takigawa, H. Mamitsuka. A spectral clustering approach to optimally combining numericalvectors with a modular network. In KDD, 2007.
    • (2007) KDD
    • Shiga, M.1    Takigawa, I.2    Mamitsuka, H.3
  • 20
    • 77955045035 scopus 로고    scopus 로고
    • Graph clustering based on structural/attribute similarities
    • Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute similarities. In VLDB, 718-729, 2009.
    • (2009) VLDB , pp. 718-729
    • Zhou, Y.1    Cheng, H.2    Yu, J.X.3
  • 21
    • 84862690118 scopus 로고    scopus 로고
    • A model-based approach to attributed graph clustering
    • Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to attributed graph clustering. In SIGMOD, pages 505-516, 2012.
    • (2012) SIGMOD , pp. 505-516
    • Xu, Z.1    Ke, Y.2    Wang, Y.3    Cheng, H.4    Cheng, J.5
  • 22
    • 84866039277 scopus 로고    scopus 로고
    • Integrating meta-path selection with user-guided object clustering in heterogeneous information networks
    • Y. Sun, B. Norick, J. Han, X. Yan, P. Yu, X. Yu. Integrating Meta-Path Selection with User-Guided Object Clustering in Heterogeneous Information Networks. In KDD, 2012.
    • (2012) KDD
    • Sun, Y.1    Norick, B.2    Han, J.3    Yan, X.4    Yu, P.5    Yu, X.6
  • 23
    • 84863746209 scopus 로고    scopus 로고
    • Relation strength-Aware clustering of heterogeneous information networks with incomplete attributes
    • Y. Sun, C. C. Aggarwal, and J. Han. Relation strength-Aware clustering of heterogeneous information networks with incomplete attributes. PVLDB, 5(5):394-405, 2012.
    • (2012) PVLDB , vol.5 , Issue.5 , pp. 394-405
    • Sun, Y.1    Aggarwal, C.C.2    Han, J.3
  • 24
    • 70349916982 scopus 로고    scopus 로고
    • Integrating clustering with ranking for heterogenous information network analysis
    • Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu. Rankclus: Integrating clustering with ranking for heterogenous information network analysis. In EDBT, 2009.
    • (2009) EDBT
    • Sun, Y.1    Han, J.2    Zhao, P.3    Yin, Z.4    Cheng, H.5    Rankclus, T.Wu.6
  • 27
    • 85153959666 scopus 로고
    • Convergence properties of the k-means algorithms
    • L. Botton and Y. Bengio. Convergence properties of the k-means algorithms. In NIPS, pages 585-592, 1994.
    • (1994) NIPS , pp. 585-592
    • Botton, L.1    Bengio, Y.2
  • 28
    • 79951739260 scopus 로고    scopus 로고
    • Clustering large attributed graphs: An efficient incremental approach
    • Y. Zhou, H. Cheng, and J. X. Yu. Clustering large attributed graphs: An efficient incremental approach. In ICDM, 2010.
    • (2010) ICDM
    • Zhou, Y.1    Cheng, H.2    Yu, J.X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.