-
1
-
-
33747172362
-
Maximizing the spread of influence through a social network
-
D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD, 2003.
-
(2003)
KDD
-
-
Kempe, D.1
Kleinberg, J.2
Tardos, E.3
-
2
-
-
0035789667
-
Mining the network value of customers
-
P. Domingos and M. Richardson. Mining the network value of customers. In KDD, pages 57-66, 2001.
-
(2001)
KDD
, pp. 57-66
-
-
Domingos, P.1
Richardson, M.2
-
3
-
-
67650323503
-
Mining social networks using heat diffusion processes for marketing candidates selection
-
H. Ma, H. Yang, M. R. Lyu, and I. King. Mining social networks using heat diffusion processes for marketing candidates selection. In CIKM, pages 233-242, 2008.
-
(2008)
CIKM
, pp. 233-242
-
-
Ma, H.1
Yang, H.2
Lyu, M.R.3
King, I.4
-
4
-
-
77956220662
-
Suggesting friends using the implicit social graph
-
M. Roth, A. Ben-David, D. Deutscher, G. Flysher, I. Horn, A. Leichtberg, N. Leiser, Y. Matias, and R. Merom. Suggesting friends using the implicit social graph. In KDD, pages 233-242, 2010.
-
(2010)
KDD
, pp. 233-242
-
-
Roth, M.1
Ben-David, A.2
Deutscher, D.3
Flysher, G.4
Horn, I.5
Leichtberg, A.6
Leiser, N.7
Matias, Y.8
Merom, R.9
-
5
-
-
84866021278
-
Information diffusion and external influence in networks
-
S. Myers, C. Zhu, J. Leskovec. Information Diffusion and External Influence in Networks. In KDD, pages 33-41, 2012.
-
(2012)
KDD
, pp. 33-41
-
-
Myers, S.1
Zhu, C.2
Leskovec, J.3
-
6
-
-
84880884400
-
Probabilistic classification and clustering in relational data
-
B. Taskar, E. Segal, D. Koller. Probabilistic Classification and Clustering in Relational Data. In IJCAI, 2001.
-
(2001)
IJCAI
-
-
Taskar, B.1
Segal, E.2
Koller, D.3
-
7
-
-
35248843375
-
Community mining from multi-relational networks
-
D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Community mining from multi-relational networks. In PKDD, 2005.
-
(2005)
PKDD
-
-
Cai, D.1
Shao, Z.2
He, X.3
Yan, X.4
Han, J.5
-
8
-
-
70350679112
-
Combining link and content for community detection: A discriminative approach
-
T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community detection: A discriminative approach. In KDD, pages 927-936, 2009.
-
(2009)
KDD
, pp. 927-936
-
-
Yang, T.1
Jin, R.2
Chi, Y.3
Zhu, S.4
-
9
-
-
80052691243
-
Ranking-based classification of heterogeneous information networks
-
M. Ji, J. Han, and M. Danilevsky. Ranking-based classification of heterogeneous information networks. In KDD, pages 1298-1306, 2011.
-
(2011)
KDD
, pp. 1298-1306
-
-
Ji, M.1
Han, J.2
Danilevsky, M.3
-
10
-
-
84866009688
-
Query-driven discovery of semantically similar substructures in heterogeneous networks
-
X. Yu, Y. Sun, P. Zhao, and J. Han. Query-driven discovery of semantically similar substructures in heterogeneous networks. In KDD, pages 1500-1503, 2012.
-
(2012)
KDD
, pp. 1500-1503
-
-
Yu, X.1
Sun, Y.2
Zhao, P.3
Han, J.4
-
11
-
-
0034244751
-
Normalized cuts and image segmentation
-
J. Shi and J. Malik. Normalized cuts and image segmentation. In TPAMI, 22(8), pages 888-905, 2000.
-
(2000)
TPAMI
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
12
-
-
37649028224
-
Finding and evaluating community structure in networks
-
M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. In Phys. Rev. E 69, 026113, 2004.
-
(2004)
Phys. Rev. E
, vol.69
, pp. 026113
-
-
Newman, M.E.J.1
Girvan, M.2
-
13
-
-
36949010345
-
Scan: A structural clustering algorithm for networks
-
X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: A structural clustering algorithm for networks. In KDD, 2007.
-
(2007)
KDD
-
-
Xu, X.1
Yuruk, N.2
Feng, Z.3
Schweiger, T.A.J.4
-
14
-
-
70350647698
-
Scalable graph clustering using stochastic flows: Applications to community discovery
-
V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic flows: Applications to community discovery. In KDD, 2009.
-
(2009)
KDD
-
-
Satuluri, V.1
Parthasarathy, S.2
-
15
-
-
80052767847
-
Scalable discovery of best clusters on large graphs
-
K. Macropol and A. Singh. Scalable discovery of best clusters on large graphs. In PVLDB, 3(1), 693-702, 2010.
-
(2010)
PVLDB
, vol.3
, Issue.1
, pp. 693-702
-
-
Macropol, K.1
Singh, A.2
-
16
-
-
57149123533
-
Efficient aggregation for graph summarization
-
Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summarization. In SIGMOD, 567-580, 2008.
-
(2008)
SIGMOD
, pp. 567-580
-
-
Tian, Y.1
Hankins, R.A.2
Patel, J.M.3
-
17
-
-
77952750771
-
Discovery-driven graph summarization
-
N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph summarization. In ICDE, pages 880-891, 2010.
-
(2010)
ICDE
, pp. 880-891
-
-
Zhang, N.1
Tian, Y.2
Patel, J.M.3
-
18
-
-
84857166128
-
Entropy-based graph clustering: Application to biological and social networks
-
E. C. Kenley and Y.-R. Cho. Entropy-based graph clustering: Application to biological and social networks. In ICDM'11.
-
ICDM'11.
-
-
Kenley, E.C.1
Cho, Y.-R.2
-
19
-
-
36849029834
-
A spectral clustering approach to optimally combining numericalvectors with a modular network
-
M. Shiga, I. Takigawa, H. Mamitsuka. A spectral clustering approach to optimally combining numericalvectors with a modular network. In KDD, 2007.
-
(2007)
KDD
-
-
Shiga, M.1
Takigawa, I.2
Mamitsuka, H.3
-
20
-
-
77955045035
-
Graph clustering based on structural/attribute similarities
-
Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute similarities. In VLDB, 718-729, 2009.
-
(2009)
VLDB
, pp. 718-729
-
-
Zhou, Y.1
Cheng, H.2
Yu, J.X.3
-
21
-
-
84862690118
-
A model-based approach to attributed graph clustering
-
Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to attributed graph clustering. In SIGMOD, pages 505-516, 2012.
-
(2012)
SIGMOD
, pp. 505-516
-
-
Xu, Z.1
Ke, Y.2
Wang, Y.3
Cheng, H.4
Cheng, J.5
-
22
-
-
84866039277
-
Integrating meta-path selection with user-guided object clustering in heterogeneous information networks
-
Y. Sun, B. Norick, J. Han, X. Yan, P. Yu, X. Yu. Integrating Meta-Path Selection with User-Guided Object Clustering in Heterogeneous Information Networks. In KDD, 2012.
-
(2012)
KDD
-
-
Sun, Y.1
Norick, B.2
Han, J.3
Yan, X.4
Yu, P.5
Yu, X.6
-
23
-
-
84863746209
-
Relation strength-Aware clustering of heterogeneous information networks with incomplete attributes
-
Y. Sun, C. C. Aggarwal, and J. Han. Relation strength-Aware clustering of heterogeneous information networks with incomplete attributes. PVLDB, 5(5):394-405, 2012.
-
(2012)
PVLDB
, vol.5
, Issue.5
, pp. 394-405
-
-
Sun, Y.1
Aggarwal, C.C.2
Han, J.3
-
24
-
-
70349916982
-
Integrating clustering with ranking for heterogenous information network analysis
-
Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu. Rankclus: Integrating clustering with ranking for heterogenous information network analysis. In EDBT, 2009.
-
(2009)
EDBT
-
-
Sun, Y.1
Han, J.2
Zhao, P.3
Yin, Z.4
Cheng, H.5
Rankclus, T.Wu.6
-
27
-
-
85153959666
-
Convergence properties of the k-means algorithms
-
L. Botton and Y. Bengio. Convergence properties of the k-means algorithms. In NIPS, pages 585-592, 1994.
-
(1994)
NIPS
, pp. 585-592
-
-
Botton, L.1
Bengio, Y.2
-
28
-
-
79951739260
-
Clustering large attributed graphs: An efficient incremental approach
-
Y. Zhou, H. Cheng, and J. X. Yu. Clustering large attributed graphs: An efficient incremental approach. In ICDM, 2010.
-
(2010)
ICDM
-
-
Zhou, Y.1
Cheng, H.2
Yu, J.X.3
|