메뉴 건너뛰기




Volumn 5, Issue 5, 2012, Pages 394-405

Relation strength-aware clustering of heterogeneous information networks with incomplete attributes

Author keywords

[No Author keywords available]

Indexed keywords

EMBEDDED SYSTEMS; INFORMATION SERVICES; ITERATIVE METHODS; ONLINE SYSTEMS; SEMANTICS; SOCIAL NETWORKING (ONLINE);

EID: 84863746209     PISSN: None     EISSN: 21508097     Source Type: Conference Proceeding    
DOI: 10.14778/2140436.2140437     Document Type: Article
Times cited : (133)

References (28)
  • 2
    • 33749575022 scopus 로고    scopus 로고
    • Group formation in large social networks: membership, growth, and evolution
    • L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and X. Lan. Group formation in large social networks: membership, growth, and evolution. In KDD, pages 44-54, 2006.
    • (2006) KDD , pp. 44-54
    • Backstrom, L.1    Huttenlocher, D.P.2    Kleinberg, J.M.3    Lan, X.4
  • 3
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In KDD, pages 59-68, 2004.
    • (2004) KDD , pp. 59-68
    • Basu, S.1    Bilenko, M.2    Mooney, R.J.3
  • 4
    • 0003857778 scopus 로고    scopus 로고
    • A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models
    • (ICSI-TR-97-021)
    • J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. University of Berkeley Tech Rep ICSITR, (ICSI-TR-97-021), 1997.
    • (1997) University of Berkeley Tech Rep ICSITR
    • Bilmes, J.1
  • 5
    • 77952773506 scopus 로고    scopus 로고
    • Progressive clustering of networks using structure-connected order of traversal
    • D. Bortner and J. Han. Progressive clustering of networks using structure-connected order of traversal. In ICDE, 653-656, 2010.
    • (2010) ICDE , pp. 653-656
    • Bortner, D.1    Han, J.2
  • 6
    • 33749572698 scopus 로고    scopus 로고
    • Evolutionary clustering
    • D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In KDD, pages 554-560, 2006.
    • (2006) KDD , pp. 554-560
    • Chakrabarti, D.1    Kumar, R.2    Tomkins, A.3
  • 7
    • 36849005505 scopus 로고    scopus 로고
    • Evolutionary spectral clustering by incorporating temporal smoothness
    • Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng. Evolutionary spectral clustering by incorporating temporal smoothness. In KDD, pages 153-162, 2007.
    • (2007) KDD , pp. 153-162
    • Chi, Y.1    Song, X.2    Zhou, D.3    Hino, K.4    Tseng, B.L.5
  • 8
    • 41349117788 scopus 로고    scopus 로고
    • Finding community structure in very large networks
    • 066111
    • A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large networks. In Phys. Rev. E 70, 066111, 2004.
    • (2004) Phys. Rev. E , vol.70
    • Clauset, A.1    Newman, M.E.J.2    Moore, C.3
  • 10
    • 72449181218 scopus 로고    scopus 로고
    • Heterogeneous source consensus learning via decision propagation and negotiation
    • J. Gao, W. Fan, Y. Sun, and J. Han. Heterogeneous source consensus learning via decision propagation and negotiation. In KDD, 2009.
    • (2009) KDD
    • Gao, J.1    Fan, W.2    Sun, Y.3    Han, J.4
  • 11
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic analysis
    • T. Hofmann. Probabilistic latent semantic analysis. In UAI, 1999.
    • (1999) UAI
    • Hofmann, T.1
  • 12
    • 33845291376 scopus 로고    scopus 로고
    • Investigation on several model selection criteria for determining the number of cluster
    • X. Hu and L. Xu. Investigation on several model selection criteria for determining the number of cluster. Neural Inform. Proces. - Lett. and Reviews, 4:1-10, 2004.
    • (2004) Neural Inform. Proces. - Lett. and Reviews , vol.4 , pp. 1-10
    • Hu, X.1    Xu, L.2
  • 14
    • 79851513672 scopus 로고    scopus 로고
    • A particle-and-density based evolutionary clustering method for dynamic networks
    • M.-S. Kim and J. Han. A particle-and-density based evolutionary clustering method for dynamic networks. PVLDB, 2(1):622-633, 2009.
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 622-633
    • Kim, M.-S.1    Han, J.2
  • 15
    • 52949106331 scopus 로고    scopus 로고
    • Statistical properties of community structure in large social and information networks
    • J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of community structure in large social and information networks. In WWW, 2008.
    • (2008) WWW
    • Leskovec, J.1    Lang, K.J.2    Dasgupta, A.3    Mahoney, M.W.4
  • 16
    • 36849020504 scopus 로고    scopus 로고
    • A probabilistic framework for relational clustering
    • B. Long, Z. M. Zhang, and P. S. Yu. A probabilistic framework for relational clustering. In KDD, pages 470-479, 2007.
    • (2007) KDD , pp. 470-479
    • Long, B.1    Zhang, Z.M.2    Yu, P.S.3
  • 17
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • December
    • U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:395-416, December 2007.
    • (2007) Statistics and Computing , vol.17 , pp. 395-416
    • Luxburg, U.1
  • 18
    • 57349152312 scopus 로고    scopus 로고
    • Topic modeling with network regularization
    • Q. Mei, D. Cai, D. Zhang, and C. Zhai. Topic modeling with network regularization. In WWW, 2008.
    • (2008) WWW
    • Mei, Q.1    Cai, D.2    Zhang, D.3    Zhai, C.4
  • 19
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • June
    • G. Milligan and M. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2):159-179, June 1985.
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.1    Cooper, M.2
  • 20
    • 36849029834 scopus 로고    scopus 로고
    • A spectral clustering approach to optimally combining numericalvectors with a modular network
    • M. Shiga, I. Takigawa, and H. Mamitsuka. A spectral clustering approach to optimally combining numericalvectors with a modular network. In KDD, pages 647-656, 2007.
    • (2007) KDD , pp. 647-656
    • Shiga, M.1    Takigawa, I.2    Mamitsuka, H.3
  • 21
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • March
    • A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res., 3:583-617, March 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 22
    • 77951153812 scopus 로고    scopus 로고
    • itopicmodel: Information network-integrated topic modeling
    • Y. Sun, J. Han, J. Gao, and Y. Yu. itopicmodel: Information network-integrated topic modeling. In ICDM, pages 493-502, 2009.
    • (2009) ICDM , pp. 493-502
    • Sun, Y.1    Han, J.2    Gao, J.3    Yu, Y.4
  • 23
    • 70350625449 scopus 로고    scopus 로고
    • Ranking-based clustering of heterogeneous information networks with star network schema
    • Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous information networks with star network schema. In KDD, 2009.
    • (2009) KDD
    • Sun, Y.1    Yu, Y.2    Han, J.3
  • 24
    • 84880884400 scopus 로고    scopus 로고
    • Probabilistic classification and clustering in relational data
    • B. Taskar, E. Segal, and D. Koller. Probabilistic classification and clustering in relational data. In IJCAI, pages 870-876, 2001.
    • (2001) IJCAI , pp. 870-876
    • Taskar, B.1    Segal, E.2    Koller, D.3
  • 25
    • 70350679112 scopus 로고    scopus 로고
    • Combining link and content for community detection: a discriminative approach
    • T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community detection: a discriminative approach. In KDD, 2009.
    • (2009) KDD
    • Yang, T.1    Jin, R.2    Chi, Y.3    Zhu, S.4
  • 28
    • 77955045035 scopus 로고    scopus 로고
    • Graph clustering based on structural/attribute similarities
    • Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute similarities. Proc. VLDB Endow., 2(1), 2009.
    • (2009) Proc. VLDB Endow. , vol.2 , Issue.1
    • Zhou, Y.1    Cheng, H.2    Yu, J.X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.