메뉴 건너뛰기




Volumn 129, Issue 10, 2017, Pages 1296-1307

CX3CR1-dependent endothelial margination modulates Ly6Chigh monocyte systemic deployment upon inflammation in mice

Author keywords

[No Author keywords available]

Indexed keywords

CHEMOKINE RECEPTOR CX3CR1; LIPOPOLYSACCHARIDE; CHEMOKINE RECEPTOR; CX3CR1 PROTEIN, MOUSE; LY ANTIGEN; LY-6C ANTIGEN, MOUSE;

EID: 85015254665     PISSN: 00064971     EISSN: 15280020     Source Type: Journal    
DOI: 10.1182/blood-2016-08-732164     Document Type: Article
Times cited : (36)

References (34)
  • 1
    • 34547728312 scopus 로고    scopus 로고
    • Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
    • Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 2007;317(5838):666-670.
    • (2007) Science. , vol.317 , Issue.5838 , pp. 666-670
    • Auffray, C.1    Fogg, D.2    Garfa, M.3
  • 2
    • 84872765982 scopus 로고    scopus 로고
    • Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis [published correction appears in Immunity. 2013; 38(5): 1073-1079]
    • Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis [published correction appears in Immunity. 2013; 38(5):1073-1079]. Immunity. 2013;38(1):79-91.
    • (2013) Immunity. , vol.38 , Issue.1 , pp. 79-91
    • Yona, S.1    Kim, K.W.2    Wolf, Y.3
  • 3
    • 1642406217 scopus 로고    scopus 로고
    • Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response
    • Sunderkötter C, Nikolic T, Dillon MJ, et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol. 2004;172(7):4410-4417.
    • (2004) J Immunol. , vol.172 , Issue.7 , pp. 4410-4417
    • Sunderkötter, C.1    Nikolic, T.2    Dillon, M.J.3
  • 4
    • 68149119072 scopus 로고    scopus 로고
    • Identification of splenic reservoir monocytes and their deployment to inflammatory sites
    • Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612-616.
    • (2009) Science. , vol.325 , Issue.5940 , pp. 612-616
    • Swirski, F.K.1    Nahrendorf, M.2    Etzrodt, M.3
  • 5
    • 79954591540 scopus 로고    scopus 로고
    • Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands
    • Shi C, Jia T, Mendez-Ferrer S, et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity. 2011;34(4): 590-601.
    • (2011) Immunity. , vol.34 , Issue.4 , pp. 590-601
    • Shi, C.1    Jia, T.2    Mendez-Ferrer, S.3
  • 6
    • 34147164049 scopus 로고    scopus 로고
    • Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites
    • Tsou CL, Peters W, Si Y, et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 2007;117(4):902-909.
    • (2007) J Clin Invest. , vol.117 , Issue.4 , pp. 902-909
    • Tsou, C.L.1    Peters, W.2    Si, Y.3
  • 7
    • 33645902493 scopus 로고    scopus 로고
    • Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
    • Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006;7(3):311-317.
    • (2006) Nat Immunol. , vol.7 , Issue.3 , pp. 311-317
    • Serbina, N.V.1    Pamer, E.G.2
  • 8
    • 59649092443 scopus 로고    scopus 로고
    • CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival
    • Landsman L, Bar-On L, Zernecke A, et al. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood. 2009;113(4):963-972.
    • (2009) Blood. , vol.113 , Issue.4 , pp. 963-972
    • Landsman, L.1    Bar-On, L.2    Zernecke, A.3
  • 9
    • 0035851124 scopus 로고    scopus 로고
    • Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1)
    • Garton KJ, Gough PJ, Blobel CP, et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem. 2001; 276(41):37993-38001.
    • (2001) J Biol Chem. , vol.276 , Issue.41 , pp. 37993-38001
    • Garton, K.J.1    Gough, P.J.2    Blobel, C.P.3
  • 10
    • 57649183339 scopus 로고    scopus 로고
    • Functional adhesiveness of the CX3CL1 chemokine requires its aggregation. Role of the transmembrane domain
    • Hermand P, Pincet F, Carvalho S, et al. Functional adhesiveness of the CX3CL1 chemokine requires its aggregation. Role of the transmembrane domain. J Biol Chem. 2008; 283(44):30225-30234.
    • (2008) J Biol Chem. , vol.283 , Issue.44 , pp. 30225-30234
    • Hermand, P.1    Pincet, F.2    Carvalho, S.3
  • 11
    • 84886435561 scopus 로고    scopus 로고
    • CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice
    • Jacquelin S, Licata F, Dorgham K, et al. CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice. Blood. 2013;122(5):674-683.
    • (2013) Blood. , vol.122 , Issue.5 , pp. 674-683
    • Jacquelin, S.1    Licata, F.2    Dorgham, K.3
  • 12
    • 0022578096 scopus 로고
    • Distribution of blood monocytes between a marginating and a circulating pool
    • van Furth R, Sluiter W. Distribution of blood monocytes between a marginating and a circulating pool. J Exp Med. 1986;163(2):474-479.
    • (1986) J Exp Med. , vol.163 , Issue.2 , pp. 474-479
    • Van Furth, R.1    Sluiter, W.2
  • 13
    • 80355146868 scopus 로고    scopus 로고
    • Monocyte recruitment during infection and inflammation
    • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762-774.
    • (2011) Nat Rev Immunol. , vol.11 , Issue.11 , pp. 762-774
    • Shi, C.1    Pamer, E.G.2
  • 14
    • 0028228377 scopus 로고
    • Lipolysaccharide-induced monocyte retention in the lung. Role of monocyte stiffness, actin assembly, and CD18-dependent adherence
    • Doherty DE, Downey GP, Schwab B III, Elson E, Worthen GS. Lipolysaccharide-induced monocyte retention in the lung. Role of monocyte stiffness, actin assembly, and CD18-dependent adherence. J Immunol. 1994;153(1):241-255.
    • (1994) J Immunol. , vol.153 , Issue.1 , pp. 241-255
    • De, D.1    Downey, G.P.2    Schwab, B.3    Elson, E.4    Worthen, G.S.5
  • 17
    • 0034028817 scopus 로고    scopus 로고
    • Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
    • Jung S, Aliberti J, Graemmel P, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000; 20(11):4106-4114.
    • (2000) Mol Cell Biol. , vol.20 , Issue.11 , pp. 4106-4114
    • Jung, S.1    Aliberti, J.2    Graemmel, P.3
  • 18
    • 38949159104 scopus 로고    scopus 로고
    • Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice
    • Ovchinnikov DA, van Zuylen WJ, DeBats CE, Alexander KA, Kellie S, Hume DA. Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice. J Leukoc Biol. 2008;83(2):430-433.
    • (2008) J Leukoc Biol. , vol.83 , Issue.2 , pp. 430-433
    • Ovchinnikov, D.A.1    Van Zuylen, W.J.2    DeBats, C.E.3    Alexander, K.A.4    Kellie, S.5    Hume, D.A.6
  • 19
    • 84959912586 scopus 로고    scopus 로고
    • Ly6Chigh monocytes protect against kidney damage during sepsis via a CX3CR1-dependent adhesion mechanism
    • Chousterman BG, Boissonnas A, Poupel L, et al. Ly6Chigh monocytes protect against kidney damage during sepsis via a CX3CR1-dependent adhesion mechanism. J Am Soc Nephrol. 2016; 27(3):792-803.
    • (2016) J Am Soc Nephrol. , vol.27 , Issue.3 , pp. 792-803
    • Chousterman, B.G.1    Boissonnas, A.2    Poupel, L.3
  • 20
    • 70349637859 scopus 로고    scopus 로고
    • An engineered CX3CR1 antagonist endowed with anti-inflammatory activity
    • Dorgham K, Ghadiri A, Hermand P, et al. An engineered CX3CR1 antagonist endowed with anti-inflammatory activity. J Leukoc Biol. 2009; 86(4):903-911.
    • (2009) J Leukoc Biol. , vol.86 , Issue.4 , pp. 903-911
    • Dorgham, K.1    Ghadiri, A.2    Hermand, P.3
  • 21
    • 84891707105 scopus 로고    scopus 로고
    • Intravascular staining for discrimination of vascular and tissue leukocytes
    • Anderson KG, Mayer-Barber K, Sung H, et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc. 2014; 9(1):209-222.
    • (2014) Nat Protoc. , vol.9 , Issue.1 , pp. 209-222
    • Anderson, K.G.1    Mayer-Barber, K.2    Sung, H.3
  • 22
    • 84903456315 scopus 로고    scopus 로고
    • Ly6C(high) monocytes become alternatively activated macrophages in schistosome granulomas with help from CD41 cells
    • Girgis NM, Gundra UM, Ward LN, Cabrera M, Frevert U, Loke P. Ly6C(high) monocytes become alternatively activated macrophages in schistosome granulomas with help from CD41 cells. PLoS Pathog. 2014;10(6):e1004080.
    • (2014) PLoS Pathog. , vol.10 , Issue.6 , pp. e1004080
    • Girgis, N.M.1    Gundra, U.M.2    Ward, L.N.3    Cabrera, M.4    Frevert, U.5    Loke, P.6
  • 23
    • 84938408571 scopus 로고    scopus 로고
    • Immune surveillance of the lung by migrating tissue monocytes
    • Rodero MP, Poupel L, Loyher PL, et al. Immune surveillance of the lung by migrating tissue monocytes. eLife. 2015;4:e07847.
    • (2015) ELife. , vol.4 , pp. e07847
    • Rodero, M.P.1    Poupel, L.2    Loyher, P.L.3
  • 24
    • 84938399948 scopus 로고    scopus 로고
    • The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration
    • Sauter KA, Pridans C, Sehgal A, et al. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS One. 2014;9(8):e105429.
    • (2014) PLoS One. , vol.9 , Issue.8 , pp. e105429
    • Sauter, K.A.1    Pridans, C.2    Sehgal, A.3
  • 25
    • 84876207357 scopus 로고    scopus 로고
    • Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal
    • Carlin LM, Stamatiades EG, Auffray C, et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell. 2013;153(2):362-375.
    • (2013) Cell. , vol.153 , Issue.2 , pp. 362-375
    • Carlin, L.M.1    Stamatiades, E.G.2    Auffray, C.3
  • 27
    • 0037380645 scopus 로고    scopus 로고
    • Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs
    • Andonegui G, Bonder CS, Green F, et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest. 2003; 111(7):1011-1020.
    • (2003) J Clin Invest. , vol.111 , Issue.7 , pp. 1011-1020
    • Andonegui, G.1    Bonder, C.S.2    Green, F.3
  • 28
    • 68849119321 scopus 로고    scopus 로고
    • Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection
    • Andonegui G, Zhou H, Bullard D, et al. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J Clin Invest. 2009;119(7): 1921-1930.
    • (2009) J Clin Invest. , vol.119 , Issue.7 , pp. 1921-1930
    • Andonegui, G.1    Zhou, H.2    Bullard, D.3
  • 29
    • 73949096361 scopus 로고    scopus 로고
    • Mechanisms underlying neutrophil-mediated monocyte recruitment
    • Soehnlein O, Lindbom L, Weber C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood. 2009;114(21):4613-4623.
    • (2009) Blood. , vol.114 , Issue.21 , pp. 4613-4623
    • Soehnlein, O.1    Lindbom, L.2    Weber, C.3
  • 30
    • 84930241402 scopus 로고    scopus 로고
    • Spatiotemporal expression dynamics of selectins govern the sequential extravasation of neutrophils and monocytes in the acute inflammatory response
    • Zuchtriegel G, Uhl B, Hessenauer ME, et al. Spatiotemporal expression dynamics of selectins govern the sequential extravasation of neutrophils and monocytes in the acute inflammatory response. Arterioscler Thromb Vasc Biol. 2015; 35(4):899-910.
    • (2015) Arterioscler Thromb Vasc Biol. , vol.35 , Issue.4 , pp. 899-910
    • Zuchtriegel, G.1    Uhl, B.2    Hessenauer, M.E.3
  • 32
    • 60849114014 scopus 로고    scopus 로고
    • Compensatory anti-inflammatory response syndrome
    • Adib-Conquy M, Cavaillon JM. Compensatory anti-inflammatory response syndrome. Thromb Haemost. 2009;101(1):36-47.
    • (2009) Thromb Haemost. , vol.101 , Issue.1 , pp. 36-47
    • Adib-Conquy, M.1    Cavaillon, J.M.2
  • 33
    • 84887611153 scopus 로고    scopus 로고
    • Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta
    • Michaud JP, Bellavance MA, Pré fontaine P, Rivest S. Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta. Cell Reports. 2013;5(3):646-653.
    • (2013) Cell Reports. , vol.5 , Issue.3 , pp. 646-653
    • Michaud, J.P.1    Ma, B.2    Préfontaine, P.3    Rivest, S.4
  • 34
    • 84885070390 scopus 로고    scopus 로고
    • Pharmacological inhibition of the chemokine receptor, CX3CR1, reduces atherosclerosis in mice
    • Poupel L, Boissonnas A, Hermand P, et al. Pharmacological inhibition of the chemokine receptor, CX3CR1, reduces atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2013;33(10): 2297-2305.
    • (2013) Arterioscler Thromb Vasc Biol. , vol.33 , Issue.10 , pp. 2297-2305
    • Poupel, L.1    Boissonnas, A.2    Hermand, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.