메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Mathematical modelling of transcriptional heterogeneity identifies novel markers and subpopulations in complex tissues

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN TISSUE; CELL CYCLE; DNA TRANSCRIPTION; FUNGAL CELL CULTURE; GENE EXPRESSION; GENETIC TRANSCRIPTION; IDENTITY; LEUKOCYTE; MARKER GENE; MODEL; ORGAN CULTURE; STATISTICAL MODEL; YEAST CELL; ANIMAL; ANTIBODY SPECIFICITY; BIOLOGICAL MODEL; BRAIN; FUNGAL GENE; GENE EXPRESSION PROFILING; LIVER; LUNG; METABOLISM; RAT; YEAST;

EID: 84954563283     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep18909     Document Type: Article
Times cited : (48)

References (37)
  • 1
    • 1542290446 scopus 로고    scopus 로고
    • Expression profiling-best practices for data generation and interpretation in clinical trials
    • Hoffman, E. P. et al. Expression profiling-best practices for data generation and interpretation in clinical trials. Nat. Rev. Genet. 5, 229-237 (2004).
    • (2004) Nat. Rev. Genet , vol.5 , pp. 229-237
    • Hoffman, E.P.1
  • 2
    • 9144264883 scopus 로고    scopus 로고
    • In silico dissection of cell-type-associated patterns of gene expression in prostate cancer
    • Stuart, R. O. et al. In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc. Natl. Acad. Sci. 101, 615-620 (2004).
    • (2004) Proc. Natl. Acad. Sci , vol.101 , pp. 615-620
    • Stuart, R.O.1
  • 3
    • 84884368877 scopus 로고    scopus 로고
    • Influence of tumour micro-environment heterogeneity on therapeutic response
    • Junttila, M. R., de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346-354, doi: 10.1038/nature12626 (2013).
    • (2013) Nature , vol.501 , pp. 346-354
    • Junttila, M.R.1    De Sauvage, F.J.2
  • 4
    • 84873084388 scopus 로고    scopus 로고
    • Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer
    • doi: science.1227670
    • Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543-548, doi: science.1227670 (2013).
    • (2013) Science , vol.339 , pp. 543-548
    • Kreso, A.1
  • 5
    • 77951634577 scopus 로고    scopus 로고
    • Cell type-specific gene expression differences in complex tissues
    • Shen-Orr, S. S. et al. Cell type-specific gene expression differences in complex tissues. Nat Methods 7, 287-289, doi: 10.1038/nmeth.1439 (2010).
    • (2010) Nat Methods , vol.7 , pp. 287-289
    • Shen-Orr, S.S.1
  • 6
    • 80255135608 scopus 로고    scopus 로고
    • Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain
    • doi: nmeth. 1710
    • Kuhn, A., Thu, D., Waldvogel, H. J., Faull, R. L., Luthi-Carter, R. Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain. Nat Methods 8, 945-947, doi: nmeth.1710 (2011).
    • (2011) Nat Methods , vol.8 , pp. 945-947
    • Kuhn, A.1    Thu, D.2    Waldvogel, H.J.3    Faull, R.L.4    Luthi-Carter, R.5
  • 7
    • 79951995151 scopus 로고    scopus 로고
    • PUGSVM: A caBIG analytical tool for multiclass gene selection and predictive classification
    • Yu, G. et al. PUGSVM: a caBIG analytical tool for multiclass gene selection and predictive classification. Bioinformatics 27, 736-738, doi: 10.1093/bioinformatics/btq721 (2011).
    • (2011) Bioinformatics , vol.27 , pp. 736-738
    • Yu, G.1
  • 8
    • 84882455458 scopus 로고    scopus 로고
    • Single-cell sequencing-based technologies will revolutionize whole-organism science
    • Shapiro, E., Biezuner, T., Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14, 618-630, doi: 10.1038/nrg3542 (2013).
    • (2013) Nat Rev Genet , vol.14 , pp. 618-630
    • Shapiro, E.1    Biezuner, T.2    Linnarsson, S.3
  • 9
    • 84868034841 scopus 로고    scopus 로고
    • Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling
    • doi: 4/157/157ra143
    • Yuan, Y. et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci Transl Med 4, 157ra143, doi: 4/157/157ra143 (2012).
    • (2012) Sci Transl Med , vol.4 , pp. 157-163
    • Yuan, Y.1
  • 10
    • 0042838315 scopus 로고    scopus 로고
    • Expression deconvolution: A reinterpretation of DNA microarray data reveals dynamic changes in cell populations
    • Lu, P., Nakorchevskiy, A., Marcotte, E. M. Expression deconvolution: a reinterpretation of DNA microarray data reveals dynamic changes in cell populations. Proc Natl Acad Sci USA 100, 10370-10375, doi: 10.1073/pnas.1832361100 (2003).
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10370-10375
    • Lu, P.1    Nakorchevskiy, A.2    Marcotte, E.M.3
  • 11
    • 67749112023 scopus 로고    scopus 로고
    • Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus
    • Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z., Clark, H. F. Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PloS one 4, e6098, doi: 10.1371/journal.pone.0006098 (2009).
    • (2009) PloS One , vol.4 , pp. e6098
    • Abbas, A.R.1    Wolslegel, K.2    Seshasayee, D.3    Modrusan, Z.4    Clark, H.F.5
  • 12
    • 84883432733 scopus 로고    scopus 로고
    • A self-directed method for cell-type identification and separation of gene expression microarrays
    • Zuckerman, N. S., Noam, Y., Goldsmith, A. J., Lee, P. P. A self-directed method for cell-type identification and separation of gene expression microarrays. PLoS Comput Biol 9, e1003189, doi: 10.1371/journal.pcbi.1003189 (2013).
    • (2013) PLoS Comput Biol , vol.9 , pp. e1003189
    • Zuckerman, N.S.1    Noam, Y.2    Goldsmith, A.J.3    Lee, P.P.4
  • 13
    • 84860370062 scopus 로고    scopus 로고
    • Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: A case study
    • Gaujoux, R., Seoighe, C. Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study. Infect Genet Evol 12, 913-921 (2012).
    • (2012) Infect Genet Evol , vol.12 , pp. 913-921
    • Gaujoux, R.1    Seoighe, C.2
  • 14
    • 76949086352 scopus 로고    scopus 로고
    • Applying unmixing to gene expression data for tumor phylogeny inference
    • Schwartz, R., Shackney, S. E. Applying unmixing to gene expression data for tumor phylogeny inference. BMC Bioinformatics 11, 42, doi: 10.1186/1471-2105-11-42 (2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 42
    • Schwartz, R.1    Shackney, S.E.2
  • 15
    • 84923850454 scopus 로고    scopus 로고
    • Inferring biological tasks using Pareto analysis of high-dimensional data
    • Hart, Y. et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat Methods 12, 233-235, doi: 10.1038/nmeth.3254 (2015).
    • (2015) Nat Methods , vol.12 , pp. 233-235
    • Hart, Y.1
  • 16
    • 84863012015 scopus 로고    scopus 로고
    • Gene expression deconvolution in linear space
    • author reply 9
    • Zhong, Y., Liu, Z. Gene expression deconvolution in linear space. Nat Methods 9, 8-9; author reply 9, doi: 10.1038/nmeth.1830 (2012).
    • (2012) Nat Methods , vol.9 , pp. 8-9
    • Zhong, Y.1    Liu, Z.2
  • 18
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273-3297 (1998).
    • (1998) Mol Biol Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 19
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang da, W., Sherman, B. T., Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57, doi: 10.1038/nprot.2008.211 (2009).
    • (2009) Nat Protoc , vol.4 , pp. 44-57
    • Huang Da, W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 20
    • 84868651389 scopus 로고    scopus 로고
    • Cell population-specific expression analysis of human cerebellum
    • Kuhn, A. et al. Cell population-specific expression analysis of human cerebellum. BMC Genomics 13, 610, doi: 10.1186/1471-2164-13-610 (2012).
    • (2012) BMC Genomics , vol.13 , pp. 610
    • Kuhn, A.1
  • 21
    • 84955617987 scopus 로고    scopus 로고
    • Prognostic imaging biomarkers in glioblastoma: Development and independent validation on the basis of multiregion and quantitative analysis of mr images
    • Cui, Y. et al. Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images. Radiology, 150358, doi: 10.1148/radiol.2015150358 (2015).
    • (2015) Radiology , pp. 150358
    • Cui, Y.1
  • 22
    • 77949836282 scopus 로고    scopus 로고
    • Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization
    • Wang, F. Y., Chi, C. Y., Chan, T. H., Wang, Y. Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Trans Pattern Anal Mach Intell 32, 875-888, doi: 10.1109/TPAMI.2009.72 (2010).
    • (2010) IEEE Trans Pattern Anal Mach Intell , vol.32 , pp. 875-888
    • Wang, F.Y.1    Chi, C.Y.2    Chan, T.H.3    Wang, Y.4
  • 23
    • 84885670924 scopus 로고    scopus 로고
    • The CAM software for nonnegative blind source separation in R-Java
    • Wang, N. et al. The CAM software for nonnegative blind source separation in R-Java. J. Machine Learning Research 14, 2899-2903 (2013).
    • (2013) J. Machine Learning Research , vol.14 , pp. 2899-2903
    • Wang, N.1
  • 24
    • 80052768992 scopus 로고    scopus 로고
    • CAM-CM: A signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues
    • doi: btr436
    • Chen, L. et al. CAM-CM: a signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues. Bioinformatics 27, 2607-2609, doi: btr436 (2011).
    • (2011) Bioinformatics , vol.27 , pp. 2607-2609
    • Chen, L.1
  • 25
    • 54749083549 scopus 로고    scopus 로고
    • A convex analysis framework for blind separation of Non-Negative sources
    • Chan, T.-H., Ma, W.-K., Chi, C.-Y., Wang, Y. A Convex Analysis Framework for Blind Separation of Non-Negative Sources. IEEE Trans Signal Processing 56, 5120-5134 (2008).
    • (2008) IEEE Trans Signal Processing , vol.56 , pp. 5120-5134
    • Chan, T.-H.1    Ma, W.-K.2    Chi, C.-Y.3    Wang, Y.4
  • 26
    • 82455189646 scopus 로고    scopus 로고
    • Tissue-specific compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors
    • Chen, L. et al. Tissue-specific compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors. IEEE Trans Med Imaging 30, 2044-2058, doi: 10.1109/TMI.2011.2160276 (2011).
    • (2011) IEEE Trans Med Imaging , vol.30 , pp. 2044-2058
    • Chen, L.1
  • 28
    • 84915749669 scopus 로고    scopus 로고
    • Unsupervised deconvolution of dynamic imaging reveals intratumor vascular heterogeneity and repopulation dynamics
    • Chen, L. et al. Unsupervised Deconvolution of Dynamic Imaging Reveals Intratumor Vascular Heterogeneity and Repopulation Dynamics. PloS one 9, e112143, doi: 10.1371/journal.pone.0112143 (2014).
    • (2014) PloS One , vol.9 , pp. e112143
    • Chen, L.1
  • 29
    • 84922353869 scopus 로고    scopus 로고
    • UNDO: A Bioconductor R package for unsupervised deconvolution of mixed gene expressions in tumor samples
    • Wang, N. et al. UNDO: a Bioconductor R package for unsupervised deconvolution of mixed gene expressions in tumor samples. Bioinformatics 31, 137-139, doi: 10.1093/bioinformatics/btu607 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 137-139
    • Wang, N.1
  • 30
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 33, 155-160 (2015).
    • (2015) Nat Biotechnol , vol.33 , pp. 155-160
    • Buettner, F.1
  • 32
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey, B. J., Dueck, D. Clustering by Passing Messages Between Data Points. Science 315, 972-976, doi: 10.1126/science.1136800 (2007).
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 34
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho, R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2, 65-73 (1998).
    • (1998) Mol Cell , vol.2 , pp. 65-73
    • Cho, R.J.1
  • 35
    • 41949124936 scopus 로고    scopus 로고
    • Are we overestimating the number of cell-cycling genes the impact of background models on timeseries analysis
    • Futschik, M. E., Herzel, H. Are we overestimating the number of cell-cycling genes The impact of background models on timeseries analysis. Bioinformatics 24, 1063-1069, doi: 10.1093/bioinformatics/btn072 (2008).
    • (2008) Bioinformatics , vol.24 , pp. 1063-1069
    • Futschik, M.E.1    Herzel, H.2
  • 36
    • 14844285655 scopus 로고    scopus 로고
    • Comparison of computational methods for the identification of cell cycle-regulated genes
    • de Lichtenberg, U. et al. Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics 21, 1164-1171, doi: 10.1093/bioinformatics/bti093 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 1164-1171
    • De Lichtenberg, U.1
  • 37
    • 84883194790 scopus 로고    scopus 로고
    • Measuring cell-type specific differential methylation in human brain tissue
    • Montano, C. M. et al. Measuring cell-type specific differential methylation in human brain tissue. Genome Biol 14, R94, doi: 10.1186/gb-2013-14-8-r94 (2013).
    • (2013) Genome Biol , vol.14 , pp. R94
    • Montano, C.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.