-
1
-
-
84887005678
-
Analysis of longitudinal trials with protocol deviation: A framework for relevant, accessible assumptions, and inference via multiple imputation
-
Carpenter, J. R., Roger, J. H., and Kenward, M. G. (2013). Analysis of longitudinal trials with protocol deviation: A framework for relevant, accessible assumptions, and inference via multiple imputation. Journal of Biopharmaceutical Statistics 23, 1352–1371.
-
(2013)
Journal of Biopharmaceutical Statistics
, vol.23
, pp. 1352-1371
-
-
Carpenter, J.R.1
Roger, J.H.2
Kenward, M.G.3
-
2
-
-
84910025261
-
Response to comments by Seaman et al. on analysis of longitudinal trials with protocol deviation: A framework for relevant, accessible assumptions, and inference via multiple imputation
-
Carpenter, J. R., Roger, J. H., Cro, S., and Kenward, M. G. (2014). Response to comments by Seaman et al. on analysis of longitudinal trials with protocol deviation: A framework for relevant, accessible assumptions, and inference via multiple imputation. Journal of Biopharmaceutical Statistics 24, 1363–1369.
-
(2014)
Journal of Biopharmaceutical Statistics
, vol.24
, pp. 1363-1369
-
-
Carpenter, J.R.1
Roger, J.H.2
Cro, S.3
Kenward, M.G.4
-
5
-
-
84995785045
-
Comparison of imputation variance estimators
-
Hughes, R. A., Sterne, J. A. C., and Tilling, K. (2016). Comparison of imputation variance estimators. Statistical Methods in Medical Research 25, 2541–2557.
-
(2016)
Statistical Methods in Medical Research
, vol.25
, pp. 2541-2557
-
-
Hughes, R.A.1
Sterne, J.A.C.2
Tilling, K.3
-
7
-
-
0030880605
-
Small sample inference for fixed effects from restricted maximum likelihood
-
Kenward, M. G. and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–997.
-
(1997)
Biometrics
, vol.53
, pp. 983-997
-
-
Kenward, M.G.1
Roger, J.H.2
-
8
-
-
23244448334
-
Finite sample properties of multiple imputation estimator
-
Kim, J. K. (2004). Finite sample properties of multiple imputation estimator. The Annals of Statistics 32, 766–783.
-
(2004)
The Annals of Statistics
, vol.32
, pp. 766-783
-
-
Kim, J.K.1
-
9
-
-
33646696129
-
On the bias of the multiple-imputation variance estimator in survey sampling
-
Kim, J. K., Brick, J. M., Fuller, W. A., and Kalton, G. (2006). On the bias of the multiple-imputation variance estimator in survey sampling. Journal of the Royal Statistical Society, Series B 68, 509–521.
-
(2006)
Journal of the Royal Statistical Society, Series B
, vol.68
, pp. 509-521
-
-
Kim, J.K.1
Brick, J.M.2
Fuller, W.A.3
Kalton, G.4
-
10
-
-
0030460385
-
Intent-to-treat analysis for longitudinal studies with drop-outs
-
Little, R. and Yau, L. (1996). Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics 52, 1324–1333.
-
(1996)
Biometrics
, vol.52
, pp. 1324-1333
-
-
Little, R.1
Yau, L.2
-
11
-
-
84958540717
-
On analysis of longitudinal clinical trials with missing data using reference-based imputation
-
Liu, G. F. and Pang, L. (2016). On analysis of longitudinal clinical trials with missing data using reference-based imputation. Journal of Biopharmaceutical Statistics 26, 924–936.
-
(2016)
Journal of Biopharmaceutical Statistics
, vol.26
, pp. 924-936
-
-
Liu, G.F.1
Pang, L.2
-
12
-
-
84896700857
-
An analytic method for the placebo-based pattern-mixture model
-
Lu, K. (2014a). An analytic method for the placebo-based pattern-mixture model. Statistics in Medicine 33, 1134–1145.
-
(2014)
Statistics in Medicine
, vol.33
, pp. 1134-1145
-
-
Lu, K.1
-
13
-
-
85018742924
-
Number of imputations needed to stabilize estimated treatment difference in longitudinal data analysis
-
Lu, K. (2014b). Number of imputations needed to stabilize estimated treatment difference in longitudinal data analysis. Statistical Methods in Medical Research https://doi.org/10.1177/0962280214554439
-
(2014)
Statistical Methods in Medical Research
-
-
Lu, K.1
-
14
-
-
84889688387
-
Missing data: Turning guidance into action
-
Mallinckrodt, C., Roger, J., Chuang-Stein, C., Molenberghs, G., Lane, P. W., O'kelly, M., et al. (2013). Missing data: Turning guidance into action. Statistics in Biopharmaceutical Research 5, 369–382.
-
(2013)
Statistics in Biopharmaceutical Research
, vol.5
, pp. 369-382
-
-
Mallinckrodt, C.1
Roger, J.2
Chuang-Stein, C.3
Molenberghs, G.4
Lane, P.W.5
O'kelly, M.6
-
15
-
-
84972537494
-
Multiple-imputation inference with uncongenial sources of input
-
Meng, X. (1994). Multiple-imputation inference with uncongenial sources of input. Statistical Science 9, 538–573.
-
(1994)
Statistical Science
, vol.9
, pp. 538-573
-
-
Meng, X.1
-
16
-
-
0344379018
-
Discussion: Efficiency and self-efficiency with multiple imputation inference
-
Meng, X. L. and Romero, M. (2003). Discussion: Efficiency and self-efficiency with multiple imputation inference. International Statistical Review 71, 607–618.
-
(2003)
International Statistical Review
, vol.71
, pp. 607-618
-
-
Meng, X.L.1
Romero, M.2
-
18
-
-
0000555875
-
Inference for imputation estimators
-
Robins, J. M. and Wang, N. (2000). Inference for imputation estimators. Biometrika 87, 113–124.
-
(2000)
Biometrika
, vol.87
, pp. 113-124
-
-
Robins, J.M.1
Wang, N.2
-
20
-
-
84910065891
-
Comment on analysis of longitudinal trials with protocol deviations: A framework for relevant, accessible assumptions, and inference via multiple imputation
-
Seaman, S. R., White, I. R., and Leacy, F. P. (2014). Comment on analysis of longitudinal trials with protocol deviations: A framework for relevant, accessible assumptions, and inference via multiple imputation. Journal of Biopharmaceutical Statistics 24, 1358–1362.
-
(2014)
Journal of Biopharmaceutical Statistics
, vol.24
, pp. 1358-1362
-
-
Seaman, S.R.1
White, I.R.2
Leacy, F.P.3
-
21
-
-
79953209006
-
MMRM versus MI in dealing with missing data comparison based on 25 NDA data sets
-
Siddiqui, O. (2011). MMRM versus MI in dealing with missing data comparison based on 25 NDA data sets. Journal of Biopharmaceutical Statistics 21, 423–436.
-
(2011)
Journal of Biopharmaceutical Statistics
, vol.21
, pp. 423-436
-
-
Siddiqui, O.1
-
22
-
-
60749108941
-
MMRM vs. LOCF: A comprehensive comparison based on simulation study and 25 NDA datasets
-
Siddiqui, O., Hung, J. H. M., and O'Neill, R. (2009). MMRM vs. LOCF: A comprehensive comparison based on simulation study and 25 NDA datasets. Journal of Biopharmaceutical Statistics 19, 227–246.
-
(2009)
Journal of Biopharmaceutical Statistics
, vol.19
, pp. 227-246
-
-
Siddiqui, O.1
Hung, J.H.M.2
O'Neill, R.3
-
23
-
-
84942191775
-
Short notes on maximum likelihood inference for control-based pattern-mixture models
-
Tang, Y. (2015). Short notes on maximum likelihood inference for control-based pattern-mixture models. Pharmaceutical Statistics 14, 395–399.
-
(2015)
Pharmaceutical Statistics
, vol.14
, pp. 395-399
-
-
Tang, Y.1
-
24
-
-
84974698238
-
An efficient monotone data augmentation algorithm for multiple imputation in a class of pattern mixture models
-
Tang, Y. (2016). An efficient monotone data augmentation algorithm for multiple imputation in a class of pattern mixture models. Journal of Biopharmaceutical Statistics https://doi.org/10.1080/10543406.2016.1167075
-
(2016)
Journal of Biopharmaceutical Statistics
-
-
Tang, Y.1
-
25
-
-
85013685498
-
Closed-form REML estimators and sample size determination for mixed effects models for repeated measures under monotone missingness
-
Tang, Y. (2017a). Closed-form REML estimators and sample size determination for mixed effects models for repeated measures under monotone missingness. Statistics in Medicine https://doi.org/10.1002/sim.7270
-
(2017)
Statistics in Medicine
-
-
Tang, Y.1
-
26
-
-
85014604871
-
An efficient multiple imputation algorithm for control-based and delta-adjusted pattern mixture models using SAS
-
Tang, Y. (2017b). An efficient multiple imputation algorithm for control-based and delta-adjusted pattern mixture models using SAS. Statistics in Biopharmaceutical Research 9, 116–125.
-
(2017)
Statistics in Biopharmaceutical Research
, vol.9
, pp. 116-125
-
-
Tang, Y.1
-
27
-
-
0042487265
-
Strategies to fit pattern-mixture models
-
Thijs, H., Molenberghs, G., Michiels, B., Verbeke, G., and Curran, D. (2002). Strategies to fit pattern-mixture models. Biostatistics 3, 245–265.
-
(2002)
Biostatistics
, vol.3
, pp. 245-265
-
-
Thijs, H.1
Molenberghs, G.2
Michiels, B.3
Verbeke, G.4
Curran, D.5
-
28
-
-
80052784998
-
A note on MAR, identifying restrictions, and sensitivity analysis in pattern mixture models with and without covariates for incomplete data
-
Wang, C. and Daniels, M. (2011). A note on MAR, identifying restrictions, and sensitivity analysis in pattern mixture models with and without covariates for incomplete data. Biometrics 67, 810–818.
-
(2011)
Biometrics
, vol.67
, pp. 810-818
-
-
Wang, C.1
Daniels, M.2
|