메뉴 건너뛰기




Volumn 73, Issue 4, 2017, Pages 1379-1387

On the multiple imputation variance estimator for control-based and delta-adjusted pattern mixture models

Author keywords

Control based pattern mixture model; Delta adjusted imputation; Missing not at random; Mixed effects model for repeated measures; Rubin's variance estimator; Uncongeniality

Indexed keywords

MAXIMUM LIKELIHOOD ESTIMATION;

EID: 85014697386     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.12702     Document Type: Article
Times cited : (30)

References (28)
  • 1
    • 84887005678 scopus 로고    scopus 로고
    • Analysis of longitudinal trials with protocol deviation: A framework for relevant, accessible assumptions, and inference via multiple imputation
    • Carpenter, J. R., Roger, J. H., and Kenward, M. G. (2013). Analysis of longitudinal trials with protocol deviation: A framework for relevant, accessible assumptions, and inference via multiple imputation. Journal of Biopharmaceutical Statistics 23, 1352–1371.
    • (2013) Journal of Biopharmaceutical Statistics , vol.23 , pp. 1352-1371
    • Carpenter, J.R.1    Roger, J.H.2    Kenward, M.G.3
  • 2
    • 84910025261 scopus 로고    scopus 로고
    • Response to comments by Seaman et al. on analysis of longitudinal trials with protocol deviation: A framework for relevant, accessible assumptions, and inference via multiple imputation
    • Carpenter, J. R., Roger, J. H., Cro, S., and Kenward, M. G. (2014). Response to comments by Seaman et al. on analysis of longitudinal trials with protocol deviation: A framework for relevant, accessible assumptions, and inference via multiple imputation. Journal of Biopharmaceutical Statistics 24, 1363–1369.
    • (2014) Journal of Biopharmaceutical Statistics , vol.24 , pp. 1363-1369
    • Carpenter, J.R.1    Roger, J.H.2    Cro, S.3    Kenward, M.G.4
  • 7
    • 0030880605 scopus 로고    scopus 로고
    • Small sample inference for fixed effects from restricted maximum likelihood
    • Kenward, M. G. and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–997.
    • (1997) Biometrics , vol.53 , pp. 983-997
    • Kenward, M.G.1    Roger, J.H.2
  • 8
    • 23244448334 scopus 로고    scopus 로고
    • Finite sample properties of multiple imputation estimator
    • Kim, J. K. (2004). Finite sample properties of multiple imputation estimator. The Annals of Statistics 32, 766–783.
    • (2004) The Annals of Statistics , vol.32 , pp. 766-783
    • Kim, J.K.1
  • 10
    • 0030460385 scopus 로고    scopus 로고
    • Intent-to-treat analysis for longitudinal studies with drop-outs
    • Little, R. and Yau, L. (1996). Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics 52, 1324–1333.
    • (1996) Biometrics , vol.52 , pp. 1324-1333
    • Little, R.1    Yau, L.2
  • 11
    • 84958540717 scopus 로고    scopus 로고
    • On analysis of longitudinal clinical trials with missing data using reference-based imputation
    • Liu, G. F. and Pang, L. (2016). On analysis of longitudinal clinical trials with missing data using reference-based imputation. Journal of Biopharmaceutical Statistics 26, 924–936.
    • (2016) Journal of Biopharmaceutical Statistics , vol.26 , pp. 924-936
    • Liu, G.F.1    Pang, L.2
  • 12
    • 84896700857 scopus 로고    scopus 로고
    • An analytic method for the placebo-based pattern-mixture model
    • Lu, K. (2014a). An analytic method for the placebo-based pattern-mixture model. Statistics in Medicine 33, 1134–1145.
    • (2014) Statistics in Medicine , vol.33 , pp. 1134-1145
    • Lu, K.1
  • 13
    • 85018742924 scopus 로고    scopus 로고
    • Number of imputations needed to stabilize estimated treatment difference in longitudinal data analysis
    • Lu, K. (2014b). Number of imputations needed to stabilize estimated treatment difference in longitudinal data analysis. Statistical Methods in Medical Research https://doi.org/10.1177/0962280214554439
    • (2014) Statistical Methods in Medical Research
    • Lu, K.1
  • 15
    • 84972537494 scopus 로고
    • Multiple-imputation inference with uncongenial sources of input
    • Meng, X. (1994). Multiple-imputation inference with uncongenial sources of input. Statistical Science 9, 538–573.
    • (1994) Statistical Science , vol.9 , pp. 538-573
    • Meng, X.1
  • 16
    • 0344379018 scopus 로고    scopus 로고
    • Discussion: Efficiency and self-efficiency with multiple imputation inference
    • Meng, X. L. and Romero, M. (2003). Discussion: Efficiency and self-efficiency with multiple imputation inference. International Statistical Review 71, 607–618.
    • (2003) International Statistical Review , vol.71 , pp. 607-618
    • Meng, X.L.1    Romero, M.2
  • 18
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • Robins, J. M. and Wang, N. (2000). Inference for imputation estimators. Biometrika 87, 113–124.
    • (2000) Biometrika , vol.87 , pp. 113-124
    • Robins, J.M.1    Wang, N.2
  • 20
    • 84910065891 scopus 로고    scopus 로고
    • Comment on analysis of longitudinal trials with protocol deviations: A framework for relevant, accessible assumptions, and inference via multiple imputation
    • Seaman, S. R., White, I. R., and Leacy, F. P. (2014). Comment on analysis of longitudinal trials with protocol deviations: A framework for relevant, accessible assumptions, and inference via multiple imputation. Journal of Biopharmaceutical Statistics 24, 1358–1362.
    • (2014) Journal of Biopharmaceutical Statistics , vol.24 , pp. 1358-1362
    • Seaman, S.R.1    White, I.R.2    Leacy, F.P.3
  • 21
    • 79953209006 scopus 로고    scopus 로고
    • MMRM versus MI in dealing with missing data comparison based on 25 NDA data sets
    • Siddiqui, O. (2011). MMRM versus MI in dealing with missing data comparison based on 25 NDA data sets. Journal of Biopharmaceutical Statistics 21, 423–436.
    • (2011) Journal of Biopharmaceutical Statistics , vol.21 , pp. 423-436
    • Siddiqui, O.1
  • 22
    • 60749108941 scopus 로고    scopus 로고
    • MMRM vs. LOCF: A comprehensive comparison based on simulation study and 25 NDA datasets
    • Siddiqui, O., Hung, J. H. M., and O'Neill, R. (2009). MMRM vs. LOCF: A comprehensive comparison based on simulation study and 25 NDA datasets. Journal of Biopharmaceutical Statistics 19, 227–246.
    • (2009) Journal of Biopharmaceutical Statistics , vol.19 , pp. 227-246
    • Siddiqui, O.1    Hung, J.H.M.2    O'Neill, R.3
  • 23
    • 84942191775 scopus 로고    scopus 로고
    • Short notes on maximum likelihood inference for control-based pattern-mixture models
    • Tang, Y. (2015). Short notes on maximum likelihood inference for control-based pattern-mixture models. Pharmaceutical Statistics 14, 395–399.
    • (2015) Pharmaceutical Statistics , vol.14 , pp. 395-399
    • Tang, Y.1
  • 24
    • 84974698238 scopus 로고    scopus 로고
    • An efficient monotone data augmentation algorithm for multiple imputation in a class of pattern mixture models
    • Tang, Y. (2016). An efficient monotone data augmentation algorithm for multiple imputation in a class of pattern mixture models. Journal of Biopharmaceutical Statistics https://doi.org/10.1080/10543406.2016.1167075
    • (2016) Journal of Biopharmaceutical Statistics
    • Tang, Y.1
  • 25
    • 85013685498 scopus 로고    scopus 로고
    • Closed-form REML estimators and sample size determination for mixed effects models for repeated measures under monotone missingness
    • Tang, Y. (2017a). Closed-form REML estimators and sample size determination for mixed effects models for repeated measures under monotone missingness. Statistics in Medicine https://doi.org/10.1002/sim.7270
    • (2017) Statistics in Medicine
    • Tang, Y.1
  • 26
    • 85014604871 scopus 로고    scopus 로고
    • An efficient multiple imputation algorithm for control-based and delta-adjusted pattern mixture models using SAS
    • Tang, Y. (2017b). An efficient multiple imputation algorithm for control-based and delta-adjusted pattern mixture models using SAS. Statistics in Biopharmaceutical Research 9, 116–125.
    • (2017) Statistics in Biopharmaceutical Research , vol.9 , pp. 116-125
    • Tang, Y.1
  • 28
    • 80052784998 scopus 로고    scopus 로고
    • A note on MAR, identifying restrictions, and sensitivity analysis in pattern mixture models with and without covariates for incomplete data
    • Wang, C. and Daniels, M. (2011). A note on MAR, identifying restrictions, and sensitivity analysis in pattern mixture models with and without covariates for incomplete data. Biometrics 67, 810–818.
    • (2011) Biometrics , vol.67 , pp. 810-818
    • Wang, C.1    Daniels, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.