메뉴 건너뛰기




Volumn 27, Issue 4, 2017, Pages 620-638

An efficient monotone data augmentation algorithm for multiple imputation in a class of pattern mixture models

Author keywords

Controlled imputations; delta adjusted imputations; Markov chain Monte Carlo; mixed effects model for repeated measures; monotone data augmentation

Indexed keywords

ANTIDEPRESSANT AGENT;

EID: 84974698238     PISSN: 10543406     EISSN: 15205711     Source Type: Journal    
DOI: 10.1080/10543406.2016.1167075     Document Type: Article
Times cited : (13)

References (24)
  • 1
    • 84896791790 scopus 로고    scopus 로고
    • A multiple-imputation-based approach to sensitivity analyses and effectiveness assessments in longitudinal clinical trials
    • Ayele, B. T., Lipkovich, I., Molenberghs, G., Mallinckrodt, C. H., (2014). A multiple-imputation-based approach to sensitivity analyses and effectiveness assessments in longitudinal clinical trials. Journal of Biopharmaceutical Statistics 24(2):211–28.
    • (2014) Journal of Biopharmaceutical Statistics , vol.24 , Issue.2 , pp. 211-228
    • Ayele, B.T.1    Lipkovich, I.2    Molenberghs, G.3    Mallinckrodt, C.H.4
  • 2
    • 84887005678 scopus 로고    scopus 로고
    • Analysis of longitudinal trials with protocol deviation: a framework for relevant, accessible assumptions, and inference via multiple imputation
    • Carpenter, J., Roger, J., Kenward, M., (2013). Analysis of longitudinal trials with protocol deviation:a framework for relevant, accessible assumptions, and inference via multiple imputation. Journal of Biopharmaceutical Statistics 23:1352–71.
    • (2013) Journal of Biopharmaceutical Statistics , vol.23 , pp. 1352-1371
    • Carpenter, J.1    Roger, J.2    Kenward, M.3
  • 5
    • 0442325081 scopus 로고    scopus 로고
    • Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models
    • Daniels, M. J., Kass, R. E., (1999). Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association 94:1254–1263.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1254-1263
    • Daniels, M.J.1    Kass, R.E.2
  • 6
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan, J. W., Laird, N. M., (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16:239–257.
    • (1997) Statistics in Medicine , vol.16 , pp. 239-257
    • Hogan, J.W.1    Laird, N.M.2
  • 7
    • 0030460385 scopus 로고    scopus 로고
    • Intent-to-treat analysis for longitudinal studies with drop-outs
    • Little, R., Yau, L., 1996. Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics 52:1324–1333.
    • (1996) Biometrics , vol.52 , pp. 1324-1333
    • Little, R.1    Yau, L.2
  • 8
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little, R. J. A., (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90:1112–1121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 9
    • 79951870792 scopus 로고
    • The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem
    • Liu, J. S., (1994). The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. Journal of the American Statistical Association 89:958–966.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 958-966
    • Liu, J.S.1
  • 10
    • 0001789822 scopus 로고
    • Covariance structure of the Gibbs sampler with applications to comparisons of estimators and augmentation schemes
    • Liu, J. S., Wong, W. H., Kong, A., (1994). Covariance structure of the Gibbs sampler with applications to comparisons of estimators and augmentation schemes. Biometrika 81:27–40.
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 11
    • 84896700857 scopus 로고    scopus 로고
    • An analytic method for the placebo-based pattern-mixture model
    • Lu, K., 2014. An analytic method for the placebo-based pattern-mixture model. Statistics in Medicine 33:1134–1145.
    • (2014) Statistics in Medicine , vol.33 , pp. 1134-1145
    • Lu, K.1
  • 12
    • 84921497576 scopus 로고    scopus 로고
    • Power calculations for delta-adjusted pattern-mixture models
    • Lu, K., (2015). Power calculations for delta-adjusted pattern-mixture models. Statistics in Medicine 34(5):782–795.
    • (2015) Statistics in Medicine , vol.34 , Issue.5 , pp. 782-795
    • Lu, K.1
  • 14
    • 84972537494 scopus 로고
    • Multiple-imputation inference with uncongenial sources of input
    • Meng, X., (1994). Multiple-imputation inference with uncongenial sources of input. Statistical Science 9:538–573.
    • (1994) Statistical Science , vol.9 , pp. 538-573
    • Meng, X.1
  • 16
    • 0345659236 scopus 로고    scopus 로고
    • Proper and improper multiple imputation
    • Nielsen, S., (2003). Proper and improper multiple imputation. International Statistical Review 71:593–627.
    • (2003) International Statistical Review , vol.71 , pp. 593-627
    • Nielsen, S.1
  • 17
    • 84887444688 scopus 로고    scopus 로고
    • Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models
    • Ratitch, B., O’Kelly, M., Tosiello, R., (2013). Missing data in clinical trials:from clinical assumptions to statistical analysis using pattern mixture models. Pharmaceutical Statistics 12:337–47.
    • (2013) Pharmaceutical Statistics , vol.12 , pp. 337-347
    • Ratitch, B.1    O’Kelly, M.2    Tosiello, R.3
  • 19
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L., Graham, J. W., (2002). Missing data:Our view of the state of the art. Psychological Methods 7(2):147–177.
    • (2002) Psychological Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 20
    • 60749108941 scopus 로고    scopus 로고
    • MMRM vs. LOCF: A comprehensive comparison based on simulation study and 25 NDA datasets
    • Siddiqui, O., Hung, J. H. M., O’Neill, R., (2009). MMRM vs. LOCF:A comprehensive comparison based on simulation study and 25 NDA datasets. Journal of Biopharmaceutical Statistics 19:227–246.
    • (2009) Journal of Biopharmaceutical Statistics , vol.19 , pp. 227-246
    • Siddiqui, O.1    Hung, J.H.M.2    O’Neill, R.3
  • 21
    • 11844261472 scopus 로고    scopus 로고
    • Experiences with Markov chain Monte Carlo convergence assessment in two psychometric examples
    • Sinharay, S., (2004). Experiences with Markov chain Monte Carlo convergence assessment in two psychometric examples. Journal of Educational and Behavioral Statistics 29(4):461–488.
    • (2004) Journal of Educational and Behavioral Statistics , vol.29 , Issue.4 , pp. 461-488
    • Sinharay, S.1
  • 22
    • 84930941958 scopus 로고    scopus 로고
    • An efficient monotone data augmentation algorithm for Bayesian analysis of incomplete longitudinal data
    • Tang, Y., (2015a). An efficient monotone data augmentation algorithm for Bayesian analysis of incomplete longitudinal data. Statistics and Probability Letters 104:146–52.
    • (2015) Statistics and Probability Letters , vol.104 , pp. 146-152
    • Tang, Y.1
  • 23
    • 84942191775 scopus 로고    scopus 로고
    • Short notes on maximum likelihood inference for control-based pattern-mixture models
    • Tang, Y., (2015b). Short notes on maximum likelihood inference for control-based pattern-mixture models. Pharmaceutical Statistics 14(5):395–399.
    • (2015) Pharmaceutical Statistics , vol.145 , pp. 395-399
    • Tang, Y.1
  • 24
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney, L., (1994). Markov chains for exploring posterior distributions. Annals of Statistics 22:1701–1728.
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1728
    • Tierney, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.