메뉴 건너뛰기




Volumn 9, Issue 1, 2017, Pages 116-125

An Efficient Multiple Imputation Algorithm for Control-Based and Delta-Adjusted Pattern Mixture Models using SAS

Author keywords

Control based imputation; Delta adjusted imputation; Missing not at random; Mixed effects model for repeated measures

Indexed keywords

ALGORITHM; ARTICLE; INFORMATION PROCESSING; MIXED EFFECT MODELS FOR REPEATED MEASURE; PARAMETERS; PATTERN MIXTURE MODEL; PROPORTIONAL HAZARDS MODEL; REGRESSION ANALYSIS; STATISTICAL ANALYSIS; STATISTICAL DISTRIBUTION;

EID: 85014604871     PISSN: None     EISSN: 19466315     Source Type: Journal    
DOI: 10.1080/19466315.2016.1225595     Document Type: Article
Times cited : (21)

References (21)
  • 1
    • 84896791790 scopus 로고    scopus 로고
    • A Multiple-Imputation-Based Approach to Sensitivity Analyses and Effectiveness Assessments in Longitudinal Clinical Trials
    • Ayele, B. T., Lipkovich, I., Molenberghs, G., and Mallinckrodt, C. H., (2014), “A Multiple-Imputation-Based Approach to Sensitivity Analyses and Effectiveness Assessments in Longitudinal Clinical Trials,” Journal of Biopharmaceutical Statistics, 24, 211–228.
    • (2014) Journal of Biopharmaceutical Statistics , vol.24 , pp. 211-228
    • Ayele, B.T.1    Lipkovich, I.2    Molenberghs, G.3    Mallinckrodt, C.H.4
  • 2
    • 84887005678 scopus 로고    scopus 로고
    • Analysis of Longitudinal Trials with Protocol Deviation: A Framework for Relevant, Accessible Assumptions, and Inference Via Multiple Imputation
    • Carpenter, J., Roger, J., and Kenward, M., (2013), “Analysis of Longitudinal Trials with Protocol Deviation:A Framework for Relevant, Accessible Assumptions, and Inference Via Multiple Imputation,” Journal of Biopharmaceutical Statistics, 23, 1352–1371.
    • (2013) Journal of Biopharmaceutical Statistics , vol.23 , pp. 1352-1371
    • Carpenter, J.1    Roger, J.2    Kenward, M.3
  • 4
    • 0033566769 scopus 로고    scopus 로고
    • Statistical Principles for Clinical Trials: ICH Harmonized Tripartite Guideline
    • ICH E9 (1999), “Statistical Principles for Clinical Trials:ICH Harmonized Tripartite Guideline,” Statistics in Medicine, 18, 1905–1942.
    • (1999) Statistics in Medicine , vol.18 , pp. 1905-1942
  • 5
    • 0030460385 scopus 로고    scopus 로고
    • Intent-to-Treat Analysis for Longitudinal Studies with Drop-outs
    • Little, R., and Yau, L., (1996), “Intent-to-Treat Analysis for Longitudinal Studies with Drop-outs,” Biometrics, 52, 1324–1333.
    • (1996) Biometrics , vol.52 , pp. 1324-1333
    • Little, R.1    Yau, L.2
  • 6
    • 79951870792 scopus 로고
    • The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem
    • Liu, J. S., (1994), “The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem,” Journal of the American Statistical Association, 89, 958–966.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 958-966
    • Liu, J.S.1
  • 7
    • 84896700857 scopus 로고    scopus 로고
    • An Analytic Method for the Placebo-Based Pattern-mixture Model
    • Lu, K., (2014a), “An Analytic Method for the Placebo-Based Pattern-mixture Model,” Statistics in Medicine, 33, 1134–1145.
    • (2014) Statistics in Medicine , vol.33 , pp. 1134-1145
    • Lu, K.1
  • 8
    • 84896729078 scopus 로고    scopus 로고
    • An Extension of the Placebo-Based Pattern-Mixture Model
    • ——— (2014b), “An Extension of the Placebo-Based Pattern-Mixture Model,” Pharmaceutical Statistics, 13, 103–109.
    • (2014) Pharmaceutical Statistics , vol.13 , pp. 103-109
  • 10
    • 84972537494 scopus 로고
    • Multiple-Imputation Inference with Uncongenial Sources of Input
    • Meng, X., (1994), “Multiple-Imputation Inference with Uncongenial Sources of Input,” Statistical Science, 9, 538–573.
    • (1994) Statistical Science , vol.9 , pp. 538-573
    • Meng, X.1
  • 14
    • 84887444688 scopus 로고    scopus 로고
    • Missing Data in Clinical Trials: from Clinical Assumptions to Statistical Analysis Using Pattern Mixture Models
    • Ratitch, B., O’Kelly, M., and Tosiello, R., (2013), “Missing Data in Clinical Trials:from Clinical Assumptions to Statistical Analysis Using Pattern Mixture Models,” Pharmaceutical Statistics, 12, 337–347.
    • (2013) Pharmaceutical Statistics , vol.12 , pp. 337-347
    • Ratitch, B.1    O’Kelly, M.2    Tosiello, R.3
  • 17
    • 60749108941 scopus 로고    scopus 로고
    • MMRM vs. LOCF: A Comprehensive Comparison Based on Simulation Study and 25 NDA Datasets
    • Siddiqui, O., Hung, J. H. M., and O’Neill, R., (2009), “MMRM vs. LOCF:A Comprehensive Comparison Based on Simulation Study and 25 NDA Datasets,” Journal of Biopharmaceutical Statistics, 19, 227–246.
    • (2009) Journal of Biopharmaceutical Statistics , vol.19 , pp. 227-246
    • Siddiqui, O.1    Hung, J.H.M.2    O’Neill, R.3
  • 18
    • 84930941958 scopus 로고    scopus 로고
    • An Efficient Monotone data Augmentation Algorithm for Bayesian Analysis of Incomplete Longitudinal Data
    • Tang, Y., (2015), “An Efficient Monotone data Augmentation Algorithm for Bayesian Analysis of Incomplete Longitudinal Data,” Statistics and Probability Letters, 104, 146–152.
    • (2015) Statistics and Probability Letters , vol.104 , pp. 146-152
    • Tang, Y.1
  • 19
    • 84974698238 scopus 로고    scopus 로고
    • An Efficient Monotone data Augmentation Algorithm for Multiple Imputation in a Class of Pattern Mixture Models
    • ——— (2016), “An Efficient Monotone data Augmentation Algorithm for Multiple Imputation in a Class of Pattern Mixture Models,” Journal of Biopharmaceutical Statistics, DOI:10.1080/10543406.2016.1167075.
    • (2016) Journal of Biopharmaceutical Statistics
  • 20
    • 85014697386 scopus 로고    scopus 로고
    • On the Multiple Imputation Variance Estimator for Control-Based and Delta-Adjusted Pattern Mixture Models
    • ——— (2017), “On the Multiple Imputation Variance Estimator for Control-Based and Delta-Adjusted Pattern Mixture Models,” Biometrics, submitted.
    • (2017) Biometrics
  • 21
    • 34347407592 scopus 로고    scopus 로고
    • Multiple Imputation of Discrete and Continuous Data by Fully Conditional Specification
    • van Buuren, S., (2007), “Multiple Imputation of Discrete and Continuous Data by Fully Conditional Specification,” Statistical Methods in Medical Research, 16, 219–242.
    • (2007) Statistical Methods in Medical Research , vol.16 , pp. 219-242
    • van Buuren, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.