메뉴 건너뛰기




Volumn 67, Issue 3, 2011, Pages 810-818

A Note on MAR, Identifying Restrictions, Model Comparison, and Sensitivity Analysis in Pattern Mixture Models with and without Covariates for Incomplete Data

Author keywords

Deviance information criterion; Missing at random; Nonfuture dependence

Indexed keywords

BAYESIAN NETWORKS; BIOMETRICS; DATA HANDLING;

EID: 80052784998     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2011.01565.x     Document Type: Article
Times cited : (27)

References (22)
  • 1
    • 0001417140 scopus 로고    scopus 로고
    • The multivariate skew-normal distribution
    • Azzalini, A. and Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83, 715-726.
    • (1996) Biometrika , vol.83 , pp. 715-726
    • Azzalini, A.1    Valle, A.2
  • 4
    • 63049138893 scopus 로고    scopus 로고
    • Discussion of "Missing Data in longitudinal studies: A review" by Ibrahim and Molenberghs
    • Daniels, M. and Wang, C. (2009). Discussion of "Missing Data in longitudinal studies: A review" by Ibrahim and Molenberghs. TEST 18, 51-58.
    • (2009) TEST , vol.18 , pp. 51-58
    • Daniels, M.1    Wang, C.2
  • 5
    • 60449120489 scopus 로고    scopus 로고
    • Partial and latent ignorability in missing-data problems
    • Harel, O. and Schafer, J. (2009). Partial and latent ignorability in missing-data problems. Biometrika 96, 37-50.
    • (2009) Biometrika , vol.96 , pp. 37-50
    • Harel, O.1    Schafer, J.2
  • 6
    • 0031022645 scopus 로고    scopus 로고
    • Model-based approaches to analysing incomplete longitudinal and failure time data
    • Hogan, J. and Laird, N. (1997). Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 16, 259-272.
    • (1997) Statistics in Medicine , vol.16 , pp. 259-272
    • Hogan, J.1    Laird, N.2
  • 7
    • 0002083004 scopus 로고    scopus 로고
    • Power prior distributions for regression models
    • Ibrahim, J. and Chen, M. (2000). Power prior distributions for regression models. Statistical Science 15, 46-60.
    • (2000) Statistical Science , vol.15 , pp. 46-60
    • Ibrahim, J.1    Chen, M.2
  • 8
    • 0032925431 scopus 로고    scopus 로고
    • Parametric models for incomplete continuous and categorical longitudinal data
    • Kenward, M. and Molenberghs, G. (1999). Parametric models for incomplete continuous and categorical longitudinal data. Statistical Methods in Medical Research 8, 51-83.
    • (1999) Statistical Methods in Medical Research , vol.8 , pp. 51-83
    • Kenward, M.1    Molenberghs, G.2
  • 9
    • 1542341537 scopus 로고    scopus 로고
    • Pattern-mixture models with proper time dependence
    • Kenward, M., Molenberghs, G., and Thijs, H. (2003). Pattern-mixture models with proper time dependence. Biometrika 90, 53-71.
    • (2003) Biometrika , vol.90 , pp. 53-71
    • Kenward, M.1    Molenberghs, G.2    Thijs, H.3
  • 10
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little, R. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112-1121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.1
  • 12
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • Little, R. and Wang, Y. (1996). Pattern-mixture models for multivariate incomplete data with covariates. Biometrics 52, 98-111.
    • (1996) Biometrics , vol.52 , pp. 98-111
    • Little, R.1    Wang, Y.2
  • 15
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. (1976). Inference and missing data. Biometrika 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.1
  • 17
    • 2942658011 scopus 로고    scopus 로고
    • Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes
    • Scharfstein, D., Daniels, M., and Robins, J. (2003). Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes. Biostatistics 4, 495-512.
    • (2003) Biostatistics , vol.4 , pp. 495-512
    • Scharfstein, D.1    Daniels, M.2    Robins, J.3
  • 20
    • 33750348204 scopus 로고    scopus 로고
    • Ignorance and uncertainty regions as inferential tools in a sensitivity analysis
    • Vansteelandt, S., Goetghebeur, E., Kenward, M., and Molenberghs, G. (2006). Ignorance and uncertainty regions as inferential tools in a sensitivity analysis. Statistica Sinica 16, 953-979.
    • (2006) Statistica Sinica , vol.16 , pp. 953-979
    • Vansteelandt, S.1    Goetghebeur, E.2    Kenward, M.3    Molenberghs, G.4
  • 21
    • 78651285375 scopus 로고    scopus 로고
    • A Bayesian shrinkage model for incomplete longitudinal binary data with application to the breast cancer prevention trial
    • Wang, C., Daniels, M., Scharfstein, D., and Land, S. (2010). A Bayesian shrinkage model for incomplete longitudinal binary data with application to the breast cancer prevention trial. Journal of the American Statistical Association 105, 1333-1346.
    • (2010) Journal of the American Statistical Association , vol.105 , pp. 1333-1346
    • Wang, C.1    Daniels, M.2    Scharfstein, D.3    Land, S.4
  • 22
    • 33845489829 scopus 로고    scopus 로고
    • A simple local sensitivity analysis tool for nonignorable coarsening: Application to dependent censoring
    • Zhang, J. and Heitjan, D. (2006). A simple local sensitivity analysis tool for nonignorable coarsening: Application to dependent censoring. Biometrics 62, 1260-1268.
    • (2006) Biometrics , vol.62 , pp. 1260-1268
    • Zhang, J.1    Heitjan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.