-
1
-
-
77956280459
-
Graphene photonics and optoelectronics
-
[1] Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C., Graphene photonics and optoelectronics. Nat. Photonics 4 (2010), 611–622, 10.1038/nphoton.2010.186.
-
(2010)
Nat. Photonics
, vol.4
, pp. 611-622
-
-
Bonaccorso, F.1
Sun, Z.2
Hasan, T.3
Ferrari, A.C.4
-
2
-
-
34547199896
-
Preparation and characterization of graphene oxide paper
-
[2] Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S., Preparation and characterization of graphene oxide paper. Nature 448 (2007), 457–460, 10.1038/nature06016.
-
(2007)
Nature
, vol.448
, pp. 457-460
-
-
Dikin, D.A.1
Stankovich, S.2
Zimney, E.J.3
Piner, R.D.4
Dommett, G.H.B.5
Evmenenko, G.6
Nguyen, S.T.7
Ruoff, R.S.8
-
3
-
-
85000708701
-
Graphene-based materials for supercapacitor electrodes – A review
-
[3] Ke, Q., Wang, J., Graphene-based materials for supercapacitor electrodes – A review. J. Mater. 2 (2016), 37–54, 10.1016/j.jmat.2016.01.001.
-
(2016)
J. Mater.
, vol.2
, pp. 37-54
-
-
Ke, Q.1
Wang, J.2
-
4
-
-
57349090160
-
Current saturation in zero-bandgap, top-gated graphene field-effect transistors
-
[4] Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L., Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3 (2008), 654–659, 10.1038/nnano.2008.268.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 654-659
-
-
Meric, I.1
Han, M.Y.2
Young, A.F.3
Ozyilmaz, B.4
Kim, P.5
Shepard, K.L.6
-
5
-
-
84946944109
-
Nanofiller graphene–ZnO hybrid nanoarchitecture: optical, electrical and optoelectronic investigation
-
[5] Qurashi, A., Subrahmanyam, K.S., Kumar, P., Nanofiller graphene–ZnO hybrid nanoarchitecture: optical, electrical and optoelectronic investigation. J. Mater. Chem. C 3 (2015), 11959–11964, 10.1039/C5TC02729B.
-
(2015)
J. Mater. Chem. C
, vol.3
, pp. 11959-11964
-
-
Qurashi, A.1
Subrahmanyam, K.S.2
Kumar, P.3
-
6
-
-
38849153450
-
Magnetic correlations at graphene edges: basis for novel spintronics devices
-
[6] Yazyev, O.V., Katsnelson, M.I., Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett., 100, 2008, 47209, 10.1103/PhysRevLett. 100.047209.
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 47209
-
-
Yazyev, O.V.1
Katsnelson, M.I.2
-
7
-
-
0035831290
-
Nanobelts of semiconducting oxides
-
[7] Pan, Z.W., Nanobelts of semiconducting oxides. Science 291 (2001), 1947–1949, 10.1126/science.1058120.
-
(2001)
Science
, vol.291
, pp. 1947-1949
-
-
Pan, Z.W.1
-
8
-
-
84926339852
-
2S
-
2S. ACS Appl. Mater. Interfaces 7 (2015), 6842–6851, 10.1021/acsami.5b00411.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 6842-6851
-
-
Annanouch, F.E.1
Haddi, Z.2
Vallejos, S.3
Umek, P.4
Guttmann, P.5
Bittencourt, C.6
Llobet, E.7
-
9
-
-
84862556353
-
Metal oxide nanowire transistors
-
[9] Huang, H., Liang, B., Liu, Z., Wang, X., Chen, D., Shen, G., Metal oxide nanowire transistors. J. Mater. Chem., 22, 2012, 13428, 10.1039/c2jm31679j.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 13428
-
-
Huang, H.1
Liang, B.2
Liu, Z.3
Wang, X.4
Chen, D.5
Shen, G.6
-
10
-
-
84929429950
-
Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents
-
[10] Mohapatra, J., Mitra, A., Tyagi, H., Bahadur, D., Aslam, M., Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale 7 (2015), 9174–9184, 10.1039/C5NR00055F.
-
(2015)
Nanoscale
, vol.7
, pp. 9174-9184
-
-
Mohapatra, J.1
Mitra, A.2
Tyagi, H.3
Bahadur, D.4
Aslam, M.5
-
11
-
-
84860535608
-
Direct fabrication of ZnO nanorods array on-chip system in solution and their electrical properties
-
[11] Qurashi, A., Kim, J.H., Hahn, Y.B., Direct fabrication of ZnO nanorods array on-chip system in solution and their electrical properties. Electrochem. Commun. 18 (2012), 88–91, 10.1016/j.elecom.2012.02.027.
-
(2012)
Electrochem. Commun.
, vol.18
, pp. 88-91
-
-
Qurashi, A.1
Kim, J.H.2
Hahn, Y.B.3
-
12
-
-
80955144235
-
One-dimensional ZnO nanostructures: solution growth and functional properties
-
[12] Xu, S., Wang, Z.L., One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 3 (2011), 676–684, 10.1007/s12274-011-0160-7.
-
(2011)
Nano Res.
, vol.3
, pp. 676-684
-
-
Xu, S.1
Wang, Z.L.2
-
13
-
-
84906347180
-
4 sensitized ZnO nanotube arrays
-
4 sensitized ZnO nanotube arrays. Appl. Catal., B 163 (2015), 179–188, 10.1016/j.apcatb.2014.07.040.
-
(2015)
Appl. Catal., B
, vol.163
, pp. 179-188
-
-
Han, J.1
Liu, Z.2
Guo, K.3
Wang, B.4
Zhang, X.5
Hong, T.6
-
14
-
-
84924333978
-
Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries
-
[14] Srivastava, M., Singh, J., Kuila, T., Layek, R.K., Kim, N.H., Lee, J.H., Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 7 (2015), 4820–4868, 10.1039/C4NR07068B.
-
(2015)
Nanoscale
, vol.7
, pp. 4820-4868
-
-
Srivastava, M.1
Singh, J.2
Kuila, T.3
Layek, R.K.4
Kim, N.H.5
Lee, J.H.6
-
15
-
-
74049112725
-
Graphene−semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide
-
[15] Williams, G., Kamat, P.V., Graphene−semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25 (2009), 13869–13873, 10.1021/la900905h.
-
(2009)
Langmuir
, vol.25
, pp. 13869-13873
-
-
Williams, G.1
Kamat, P.V.2
-
16
-
-
85016632611
-
Metal Chalcogenide Nanostructures for Renewable Energy Applications
-
John Wiley & Sons
-
[16] Qurashi, A., Metal Chalcogenide Nanostructures for Renewable Energy Applications. 2015, John Wiley & Sons.
-
(2015)
-
-
Qurashi, A.1
-
17
-
-
84896044257
-
A facile route to reduced graphene oxide–zinc oxide nanorod composites with enhanced photocatalytic activity
-
[17] Huang, K., Li, Y.H., Lin, S., Liang, C., Wang, H., Ye, C.X., Wang, Y.J., Zhang, R., Fan, D.Y., Yang, H.J., Wang, Y.G., Lei, M., A facile route to reduced graphene oxide–zinc oxide nanorod composites with enhanced photocatalytic activity. Powder Technol. 257 (2014), 113–119, 10.1016/j.powtec.2014.02.047.
-
(2014)
Powder Technol.
, vol.257
, pp. 113-119
-
-
Huang, K.1
Li, Y.H.2
Lin, S.3
Liang, C.4
Wang, H.5
Ye, C.X.6
Wang, Y.J.7
Zhang, R.8
Fan, D.Y.9
Yang, H.J.10
Wang, Y.G.11
Lei, M.12
-
18
-
-
84892505566
-
Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid
-
[18] Haldorai, Y., Voit, W., Shim, J.-J., Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid. Electrochim. Acta 120 (2014), 65–72, 10.1016/j.electacta.2013.12.063.
-
(2014)
Electrochim. Acta
, vol.120
, pp. 65-72
-
-
Haldorai, Y.1
Voit, W.2
Shim, J.-J.3
-
19
-
-
84919339034
-
Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films
-
[19] Jaleh, B., Jabbari, A., Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl. Surf. Sci. 320 (2014), 339–347, 10.1016/j.apsusc.2014.09.030.
-
(2014)
Appl. Surf. Sci.
, vol.320
, pp. 339-347
-
-
Jaleh, B.1
Jabbari, A.2
-
20
-
-
84992341708
-
Tuning of structural and optical properties of graphene/ZnO nanolaminates
-
[20] Baitimirova, M., Viter, R., Andzane, J., van der Lee, A., Voiry, D., Iatsunskyi, I., Coy, E., Mikoliunaite, L., Tumenas, S., Załęski, K., Balevicius, Z., Baleviciute, I., Ramanaviciene, A., Ramanavicius, A., Jurga, S., Erts, D., Bechelany, M., Tuning of structural and optical properties of graphene/ZnO nanolaminates. J. Phys. Chem. C 120 (2016), 23716–23725, 10.1021/acs.jpcc.6b07221.
-
(2016)
J. Phys. Chem. C
, vol.120
, pp. 23716-23725
-
-
Baitimirova, M.1
Viter, R.2
Andzane, J.3
van der Lee, A.4
Voiry, D.5
Iatsunskyi, I.6
Coy, E.7
Mikoliunaite, L.8
Tumenas, S.9
Załęski, K.10
Balevicius, Z.11
Baleviciute, I.12
Ramanaviciene, A.13
Ramanavicius, A.14
Jurga, S.15
Erts, D.16
Bechelany, M.17
-
21
-
-
84907486452
-
A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate
-
[21] Nam, G.-H., Baek, S.-H., Cho, C.-H., Park, I.-K., A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate. Nanoscale 6 (2014), 11653–11658, 10.1039/C4NR02318H.
-
(2014)
Nanoscale
, vol.6
, pp. 11653-11658
-
-
Nam, G.-H.1
Baek, S.-H.2
Cho, C.-H.3
Park, I.-K.4
-
22
-
-
84894627742
-
ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson's disease
-
[22] Yue, H.Y., Huang, S., Chang, J., Heo, C., Yao, F., Adhikari, S., Gunes, F., Liu, L.C., Lee, T.H., Oh, E.S., Li, B., Zhang, J.J., Huy, T.Q., Van Luan, N., Lee, Y.H., ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson's disease. ACS Nano 8 (2014), 1639–1646, 10.1021/nn405961p.
-
(2014)
ACS Nano
, vol.8
, pp. 1639-1646
-
-
Yue, H.Y.1
Huang, S.2
Chang, J.3
Heo, C.4
Yao, F.5
Adhikari, S.6
Gunes, F.7
Liu, L.C.8
Lee, T.H.9
Oh, E.S.10
Li, B.11
Zhang, J.J.12
Huy, T.Q.13
Van Luan, N.14
Lee, Y.H.15
-
23
-
-
84924260055
-
Hierarchical ZnO/zeolite nanostructures: synthesis, growth mechanism and hydrogen detection
-
[23] Qurashi, A., Alhaffar, M., Yamani, Z.H., Hierarchical ZnO/zeolite nanostructures: synthesis, growth mechanism and hydrogen detection. RSC Adv. 5 (2015), 22570–22577, 10.1039/C4RA15497E.
-
(2015)
RSC Adv.
, vol.5
, pp. 22570-22577
-
-
Qurashi, A.1
Alhaffar, M.2
Yamani, Z.H.3
-
24
-
-
84976544641
-
2 nanoparticles: Growth mechanism structural electrical and hydrogen gas sensing properties
-
2 nanoparticles: Growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason. Sonochem. 34 (2017), 484–490, 10.1016/j.ultsonch.2016.06.025.
-
(2017)
Ultrason. Sonochem.
, vol.34
, pp. 484-490
-
-
ullah, H.1
Khan, I.2
Yamani, Z.H.3
Qurashi, A.4
-
25
-
-
84977657431
-
Characterizing the cavitation development and acoustic spectrum in various liquids
-
[25] Tzanakis, I., Lebon, G.S.B., Eskin, D.G., Pericleous, K.A., Characterizing the cavitation development and acoustic spectrum in various liquids. Ultrason. Sonochem. 34 (2017), 651–662, 10.1016/j.ultsonch.2016.06.034.
-
(2017)
Ultrason. Sonochem.
, vol.34
, pp. 651-662
-
-
Tzanakis, I.1
Lebon, G.S.B.2
Eskin, D.G.3
Pericleous, K.A.4
-
26
-
-
84969242838
-
Investigations on dynamics of interacting cavitation bubbles in strong acoustic fields
-
[26] Jiang, L., Ge, H., Liu, F., Chen, D., Investigations on dynamics of interacting cavitation bubbles in strong acoustic fields. Ultrason. Sonochem. 34 (2017), 90–97, 10.1016/j.ultsonch.2016.05.017.
-
(2017)
Ultrason. Sonochem.
, vol.34
, pp. 90-97
-
-
Jiang, L.1
Ge, H.2
Liu, F.3
Chen, D.4
-
27
-
-
70350534227
-
4 with high visible-light-induced photocatalytic activity: Ultrasonic-assisted synthesis and protective effect of surfactant
-
4 with high visible-light-induced photocatalytic activity: Ultrasonic-assisted synthesis and protective effect of surfactant. J. Hazard. Mater. 172 (2009), 338–344, 10.1016/j.jhazmat.2009.07.017.
-
(2009)
J. Hazard. Mater.
, vol.172
, pp. 338-344
-
-
Shang, M.1
Wang, W.2
Zhou, L.3
Sun, S.4
Yin, W.5
-
28
-
-
79952634346
-
Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix
-
[28] Chen, Y.-L., Hu, Z.-A., Chang, Y.-Q., Wang, H.-W., Zhang, Z.-Y., Yang, Y.-Y., Wu, H.-Y., Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C 115 (2011), 2563–2571, 10.1021/jp109597n.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 2563-2571
-
-
Chen, Y.-L.1
Hu, Z.-A.2
Chang, Y.-Q.3
Wang, H.-W.4
Zhang, Z.-Y.5
Yang, Y.-Y.6
Wu, H.-Y.7
-
29
-
-
34548841099
-
The kinetics of the hydrothermal growth of ZnO nanostructures
-
[29] Ashfold, M.N.R., Doherty, R.P., Ndifor-Angwafor, N.G., Riley, D.J., Sun, Y., The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 515 (2007), 8679–8683, 10.1016/j.tsf.2007.03.122.
-
(2007)
Thin Solid Films
, vol.515
, pp. 8679-8683
-
-
Ashfold, M.N.R.1
Doherty, R.P.2
Ndifor-Angwafor, N.G.3
Riley, D.J.4
Sun, Y.5
-
30
-
-
4744370809
-
Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution
-
[30] Govender, K., Boyle, D.S., Kenway, P.B., O'Brien, P., Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14 (2004), 2575–2591, 10.1039/B404784B.
-
(2004)
J. Mater. Chem.
, vol.14
, pp. 2575-2591
-
-
Govender, K.1
Boyle, D.S.2
Kenway, P.B.3
O'Brien, P.4
-
31
-
-
77953314241
-
One-step synthesis of superior dispersion of chemically converted graphene in organic solvents
-
[31] Pham, V.H., Cuong, T.V., Nguyen-Phan, T.-D., Pham, H.D., Kim, E.J., Hur, S.H., Shin, E.W., Kim, S., Chung, J.S., One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem. Commun., 46, 2010, 4375, 10.1039/c0cc00363h.
-
(2010)
Chem. Commun.
, vol.46
, pp. 4375
-
-
Pham, V.H.1
Cuong, T.V.2
Nguyen-Phan, T.-D.3
Pham, H.D.4
Kim, E.J.5
Hur, S.H.6
Shin, E.W.7
Kim, S.8
Chung, J.S.9
-
32
-
-
72049083225
-
Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide
-
[32] Cuong, T.V., Pham, V.H., Tran, Q.T., Hahn, S.H., Chung, J.S., Shin, E.W., Kim, E.J., Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Mater. Lett., 2010, 10.1016/j.matlet.2009.11.029.
-
(2010)
Mater. Lett.
-
-
Cuong, T.V.1
Pham, V.H.2
Tran, Q.T.3
Hahn, S.H.4
Chung, J.S.5
Shin, E.W.6
Kim, E.J.7
-
33
-
-
84948440198
-
Enhanced field-emission of silver nanoparticle–graphene oxide decorated ZnO nanowire arrays
-
[33] Wang, G., Li, Z., Li, M., Liao, J., Chen, C., Lv, S., Shi, C., Enhanced field-emission of silver nanoparticle–graphene oxide decorated ZnO nanowire arrays. Phys. Chem. Chem. Phys. 17 (2015), 31822–31829, 10.1039/C5CP05036G.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 31822-31829
-
-
Wang, G.1
Li, Z.2
Li, M.3
Liao, J.4
Chen, C.5
Lv, S.6
Shi, C.7
-
34
-
-
0001106216
-
On the optical band gap of zinc oxide
-
[34] Srikant, V., Clarke, D.R., On the optical band gap of zinc oxide. J. Appl. Phys., 83, 1998, 5447, 10.1063/1.367375.
-
(1998)
J. Appl. Phys.
, vol.83
, pp. 5447
-
-
Srikant, V.1
Clarke, D.R.2
-
35
-
-
84859755483
-
Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity
-
[35] Luo, Q.-P., Yu, X.-Y., Lei, B.-X., Chen, H.-Y., Kuang, D.-B., Su, C.-Y., Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Phys. Chem. C 116 (2012), 8111–8117, 10.1021/jp2113329.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 8111-8117
-
-
Luo, Q.-P.1
Yu, X.-Y.2
Lei, B.-X.3
Chen, H.-Y.4
Kuang, D.-B.5
Su, C.-Y.6
-
36
-
-
84957074496
-
Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting
-
[36] Chandrasekaran, S., Chung, J.S., Kim, E.J., Hur, S.H., Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting. Chem. Eng. J. 290 (2016), 465–476, 10.1016/j.cej.2016.01.029.
-
(2016)
Chem. Eng. J.
, vol.290
, pp. 465-476
-
-
Chandrasekaran, S.1
Chung, J.S.2
Kim, E.J.3
Hur, S.H.4
-
37
-
-
84922916386
-
4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting
-
4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting. Ceram. Int. 41 (2015), 5117–5128, 10.1016/j.ceramint.2014.12.084.
-
(2015)
Ceram. Int.
, vol.41
, pp. 5117-5128
-
-
Yusoff, N.1
Kumar, S.V.2
Pandikumar, A.3
Huang, N.M.4
Marlinda, A.R.5
An'amt, M.N.6
-
38
-
-
84860517156
-
Ionic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties
-
[38] Min, Y., Zhang, K., Chen, L., Chen, Y., Zhang, Y., Ionic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties. Diamond Relat. Mater. 26 (2012), 32–38, 10.1016/j.diamond.2012.04.003.
-
(2012)
Diamond Relat. Mater.
, vol.26
, pp. 32-38
-
-
Min, Y.1
Zhang, K.2
Chen, L.3
Chen, Y.4
Zhang, Y.5
-
39
-
-
84930628352
-
Facile synthesis and photocatalytic properties of ZnO core/ZnS–CdS solid solution shell nanorods grown vertically on reductive graphene oxide
-
[39] Xu, J., Sang, H., Wang, X., Wang, K., Facile synthesis and photocatalytic properties of ZnO core/ZnS–CdS solid solution shell nanorods grown vertically on reductive graphene oxide. Dalton Trans. 44 (2015), 9528–9537, 10.1039/C5DT00293A.
-
(2015)
Dalton Trans.
, vol.44
, pp. 9528-9537
-
-
Xu, J.1
Sang, H.2
Wang, X.3
Wang, K.4
-
40
-
-
84891576626
-
On Solar Hydrogen and Nanotechnology
-
John Wiley & Sons (accessed May 10, 2016)
-
[40] Vayssieres, L., On Solar Hydrogen and Nanotechnology. 2010, John Wiley & Sons https://books.google.com/books?id=WQ4s3tMpAucC&pgis=1 (accessed May 10, 2016).
-
(2010)
-
-
Vayssieres, L.1
-
41
-
-
84880126664
-
ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties
-
[41] Zou, R., He, G., Xu, K., Liu, Q., Zhang, Z., Hu, J., ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J. Mater. Chem. A, 1, 2013, 8445, 10.1039/c3ta11490b.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 8445
-
-
Zou, R.1
He, G.2
Xu, K.3
Liu, Q.4
Zhang, Z.5
Hu, J.6
-
42
-
-
84938913751
-
In situ preparation of N-ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode
-
[42] Bhirud, A., Sathaye, S., Waichal, R., Park, C.-J., Kale, B., In situ preparation of N-ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode. J. Mater. Chem. A 3 (2015), 17050–17063, 10.1039/C5TA03955J.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 17050-17063
-
-
Bhirud, A.1
Sathaye, S.2
Waichal, R.3
Park, C.-J.4
Kale, B.5
-
43
-
-
84876572886
-
Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution
-
[43] Yu, Z.B., Xie, Y.P., Liu, G., Lu, G.Q., Ma, X.L., Cheng, H.-M., Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A, 1, 2013, 2773, 10.1039/c3ta01476b.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 2773
-
-
Yu, Z.B.1
Xie, Y.P.2
Liu, G.3
Lu, G.Q.4
Ma, X.L.5
Cheng, H.-M.6
|