|
Volumn 355, Issue 6327, 2017, Pages 820-826
|
Predicting human olfactory perception from chemical features of odor molecules
a b c d e e f,g f,h f i j j j,k d d,m d a,l d,m n n more..
d
IBM
(United States)
|
Author keywords
[No Author keywords available]
|
Indexed keywords
ALGORITHM;
BIOINFORMATICS;
DATA SET;
NUMERICAL METHOD;
ODOR;
OLFACTION;
OLFACTORY CUE;
PERCEPTION;
ARTICLE;
CHEMICAL STRUCTURE;
HUMAN;
MEDICAL LITERATURE;
ODOR;
PREDICTION;
PRIORITY JOURNAL;
PSYCHOPHYSIOLOGY;
RANDOM FOREST;
SMELLING;
ADULT;
BIOLOGICAL MODEL;
INFORMATION PROCESSING;
MALE;
ALLIUM SATIVUM;
FRAGRANCE;
ADULT;
DATASETS AS TOPIC;
HUMANS;
MALE;
MODELS, BIOLOGICAL;
ODORANTS;
OLFACTORY PERCEPTION;
SMELL;
|
EID: 85013999403
PISSN: 00368075
EISSN: 10959203
Source Type: Journal
DOI: 10.1126/science.aal2014 Document Type: Article |
Times cited : (228)
|
References (19)
|