메뉴 건너뛰기




Volumn 17, Issue 1, 2017, Pages

Performance of Firth-and logF-type penalized methods in risk prediction for small or sparse binary data

Author keywords

Overfitting; Performance measures; Prediction model; Separation

Indexed keywords

CARDIOVASCULAR DISEASES; COMPUTER SIMULATION; HUMAN; PROCEDURES; REPRODUCIBILITY; RISK ASSESSMENT; RISK FACTOR; SENSITIVITY AND SPECIFICITY; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; STRESS ECHOCARDIOGRAPHY;

EID: 85013747969     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/s12874-017-0313-9     Document Type: Article
Times cited : (66)

References (33)
  • 1
    • 0035070978 scopus 로고    scopus 로고
    • Prognostic models in medicine
    • Abu-Hanna A Lucas PJF
    • Abu-Hanna A, Lucas PJF. Prognostic models in medicine. Methods Inform Med. 2001; 40:1-5.
    • (2001) Methods Inform Med , vol.40 , pp. 1-5
  • 2
    • 67650022801 scopus 로고    scopus 로고
    • Prognosis and prognostic research: What, why and how?
    • Moons KGM Royston P Vergouwe Y Grobbee DE Altman DG
    • Moons KGM, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis and prognostic research: what, why and how?. BMJ. 2009a; 338:1317-20.
    • (2009) BMJ , vol.338 , pp. 1317-1320
  • 3
    • 0034728356 scopus 로고    scopus 로고
    • What do you mean by validating a prognostic model?
    • Altman DG Royston P 10694730
    • Altman DG, Royston P. What do you mean by validating a prognostic model?. Stat Med. 2000; 19:453-73.
    • (2000) Stat Med , vol.19 , pp. 453-473
  • 4
    • 67650089602 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Application and impact of prognostic models in clinical practice
    • Moons KGM Altman DG Vergouwe Y Royston P
    • Moons KGM, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ. 2009b; 338:1487-90.
    • (2009) BMJ , vol.338 , pp. 1487-1490
  • 5
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study of the number of events per variable in logistic regression analysis
    • Peduzzi P Concato J Kemper E Holford TR Feinstein AR 8970487
    • Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996; 49:1373-9.
    • (1996) J Clin Epidemiol , vol.49 , pp. 1373-1379
  • 6
    • 84865728012 scopus 로고    scopus 로고
    • Quantifying the added value of a diagnostic test or marker
    • Moons KG de Groot JA Linnet K Reitsma JB Bossuyt PM 22952348
    • Moons KG, de Groot JA, Linnet K, Reitsma JB, Bossuyt PM. Quantifying the added value of a diagnostic test or marker. Clin Chem. 2012; 58(10):1408-17.
    • (2012) Clin Chem , vol.58 , Issue.10 , pp. 1408-1417
  • 7
    • 84861556816 scopus 로고    scopus 로고
    • Reporting and methods in clinical prediction research: A systematic review
    • Bouwmeester W Zuithoff N Mallett S Geerlings MI Vergouwe Y Steyerberg EW Altman DG Moons KGM
    • Bouwmeester W, Zuithoff N, Mallett S, Geerlings MI, Vergouwe Y, Steyerberg EW, Altman DG, Moons KGM. Reporting and methods in clinical prediction research: a systematic review. PLOS Medecine. 2012; 9(5):e1001221.
    • (2012) PLOS Medecine , vol.9 , Issue.5 , pp. e1001221
  • 8
    • 0034732710 scopus 로고    scopus 로고
    • Prognostic modelling with logistic regression analysis: A comparison of selection and estimation methods in small data sets
    • Steyerberg EW Eijkemans MJC Harrell FE Habbema JDF 10790680
    • Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Stat Med. 2000; 19(8):1059-79.
    • (2000) Stat Med , vol.19 , Issue.8 , pp. 1059-1079
  • 9
    • 84861193203 scopus 로고    scopus 로고
    • An evaluation of penalised survival methods for developing prognostic models with rare events
    • Ambler G Seaman S Omar RZ 21997569
    • Ambler G, Seaman S, Omar RZ. An evaluation of penalised survival methods for developing prognostic models with rare events. Stat Med. 2012; 31(11-12, SI):1150-61.
    • (2012) Stat Med , vol.31 , Issue.11-12 SI , pp. 1150-1161
  • 10
    • 84959490685 scopus 로고    scopus 로고
    • Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events
    • Pavlou M Ambler G Seaman S De Iorio M RZ O 26514699
    • Pavlou M, Ambler G, Seaman S, De Iorio M, RZ O. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Stat Med. 2016; 35(7):1159-77.
    • (2016) Stat Med , vol.35 , Issue.7 , pp. 1159-1177
  • 11
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Cessie SL van Houwelingen JC
    • Cessie SL, van Houwelingen JC. Ridge estimators in logistic regression. J R Stat Soc Series C. 1992; 41(1):191-201.
    • (1992) J R Stat Soc Series C , vol.41 , Issue.1 , pp. 191-201
  • 12
    • 85013853470 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R
    • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B. 1996; 58:267-88.
    • (1996) J R Stat Soc Series B , vol.58 , pp. 267-288
  • 13
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H Hastie T
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Series B. 2005; 67(2):301-20.
    • (2005) J R Stat Soc Series B , vol.67 , Issue.2 , pp. 301-320
  • 14
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou H
    • Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc. 2006; 101(476):1418-29.
    • (2006) J Am Stat Assoc , vol.101 , Issue.476 , pp. 1418-1429
  • 15
    • 62549126570 scopus 로고    scopus 로고
    • On the adaptive elastic-net with a diverging number of parameters
    • Zou H Zhang HH 20445770 2864037
    • Zou H, Zhang HH. On the adaptive elastic-net with a diverging number of parameters. Ann Stat. 2009; 37(4):1733-51.
    • (2009) Ann Stat , vol.37 , Issue.4 , pp. 1733-1751
  • 16
    • 0002662712 scopus 로고
    • On the existence of maximum likelihood estimates in logistic regression models
    • Albert A Anderson JA
    • Albert A, Anderson JA. On the existence of maximum likelihood estimates in logistic regression models. Biometrika. 1984; 71(1):1-10.
    • (1984) Biometrika , vol.71 , Issue.1 , pp. 1-10
  • 17
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • Heinze G Scemper M 12210625
    • Heinze G, Scemper M. A solution to the problem of separation in logistic regression. Stat Med. 2002; 21(16):2409-19.
    • (2002) Stat Med , vol.21 , Issue.16 , pp. 2409-2419
  • 18
    • 0020623772 scopus 로고
    • Bias correction in maximum likelihood logistic regression
    • Schaefer RL 6648121
    • Schaefer RL. Bias correction in maximum likelihood logistic regression. Stat Med. 1983; 2:71-8.
    • (1983) Stat Med , vol.2 , pp. 71-78
  • 19
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • Firth D
    • Firth D. Bias reduction of maximum likelihood estimates. Biomertika. 1993; 80:27-38.
    • (1993) Biomertika , vol.80 , pp. 27-38
  • 20
    • 0034159815 scopus 로고    scopus 로고
    • Problems due to small samples and sparse data in conditional logistic regression analysis
    • Greenland S Schwartzbaum JA Finkle WD 10707923
    • Greenland S, Schwartzbaum JA, Finkle WD. Problems due to small samples and sparse data in conditional logistic regression analysis. Am J Epidemiol. 2000; 151(5):531-9.
    • (2000) Am J Epidemiol , vol.151 , Issue.5 , pp. 531-539
  • 21
    • 84874191888 scopus 로고    scopus 로고
    • Bias correction for the proportional odds logistic regression model with application to a study of surgical complications
    • Lipsitz SR Fitzmaurice G Regenbogen SE Sinha D Ibrahim JG Gawande AA
    • Lipsitz SR, Fitzmaurice G, Regenbogen SE, Sinha D, Ibrahim JG, Gawande AA. Bias correction for the proportional odds logistic regression model with application to a study of surgical complications. J R Stat Soc Series C. 2013; 62(2):233-50.
    • (2013) J R Stat Soc Series C , vol.62 , Issue.2 , pp. 233-250
  • 22
    • 84964857173 scopus 로고    scopus 로고
    • Sparse data bias: A problem hiding in plain sight
    • Greenland S Mansournia MA Altman DG 27121591
    • Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. BMJ. 2016; 352:i1981.
    • (2016) BMJ , vol.352 , pp. i1981
  • 23
    • 84941024439 scopus 로고    scopus 로고
    • Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions
    • Greenland S Mansournia MA 26011599
    • Greenland S, Mansournia MA. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Stat Med. 2015; 34(23):3133-43.
    • (2015) Stat Med , vol.34 , Issue.23 , pp. 3133-3143
  • 24
    • 34547529771 scopus 로고    scopus 로고
    • Prior data for non-normal priors
    • Greenland S 17216667
    • Greenland S. Prior data for non-normal priors. Stat Med. 2007; 26:3578-90.
    • (2007) Stat Med , vol.26 , pp. 3578-3590
  • 25
    • 0037366626 scopus 로고    scopus 로고
    • Generalized conjugate priors for Bayesian analysis of risk and survival regressions
    • Greenland S 12762445
    • Greenland S. Generalized conjugate priors for bayesian analysis of risk and survival regressions. Biometrics. 2003; 59:92-9.
    • (2003) Biometrics , vol.59 , pp. 92-99
  • 26
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: A framework for traditional and novel measures
    • Steyerberg EW Vickers AJ Cook NR Gerds T Gonen M Obuchowski N Pencina MJ Kattan MW
    • Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2009; 21(1):128-38.
    • (2009) Epidemiology , vol.21 , Issue.1 , pp. 128-138
  • 27
    • 0033101841 scopus 로고    scopus 로고
    • Prognostic value of dobutamine stress echocardiography in predicting cardiac events in patients with known or suspected coronary artery disease
    • Krivokapich J Child J Walter DO Garfinkel A 10080472
    • Krivokapich J, Child J, Walter DO, Garfinkel A. Prognostic value of dobutamine stress echocardiography in predicting cardiac events in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 1999; 33(3):708-16.
    • (1999) J Am Coll Cardiol , vol.33 , Issue.3 , pp. 708-716
  • 28
    • 84954405416 scopus 로고    scopus 로고
    • Sample size considerations for the external validation of a multivariable prognostic model: A resampling study
    • Collins GS Ogundimu EO Altman DG 26553135
    • Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study. Stat Med. 2016; 35(2):214-26.
    • (2016) Stat Med , vol.35 , Issue.2 , pp. 214-226
  • 29
    • 77952566299 scopus 로고    scopus 로고
    • High-dimensional cox models: The choice of penalty as part of the model building process
    • Benner A Zucknick M Hielscher T Ittrich C Mansmann U
    • Benner A, Zucknick M, Hielscher T, Ittrich C, Mansmann U. High-dimensional cox models: the choice of penalty as part of the model building process. Biometrical J. 2010; 52:50-69.
    • (2010) Biometrical J , vol.52 , pp. 50-69
  • 30
    • 60349120810 scopus 로고    scopus 로고
    • Survival prediction using gene expression data: A review and comparison
    • van Wieringen WN Kun D Hampel AL R Boulesteix
    • van Wieringen WN, Kun D, Hampel AL R, Boulesteix. Survival prediction using gene expression data: a review and comparison. Comput Stat Data Anal. 2009; 53:1590-603.
    • (2009) Comput Stat Data Anal , vol.53 , pp. 1590-1603
  • 31
    • 77950536023 scopus 로고    scopus 로고
    • A solution to separation and multicollinearity in multiple logistic regression
    • Shen J Gao S 20376286 2849171
    • Shen J, Gao S. A solution to separation and multicollinearity in multiple logistic regression. J Data Sci. 2008; 6(4):515-31.
    • (2008) J Data Sci , vol.6 , Issue.4 , pp. 515-531
  • 33
    • 84975140559 scopus 로고    scopus 로고
    • Comparison of cox model methods in a low-dimensional setting with few events
    • Ojeda FM Müller C D B A TD Schillert A Heinig M Zeller T Schnabel RB
    • Ojeda FM, Müller C, D B, A TD, Schillert A, Heinig M, Zeller T, Schnabel RB. Comparison of cox model methods in a low-dimensional setting with few events. Genomics Proteomics Bioinforma. 2016; 14(4):235-43.
    • (2016) Genomics Proteomics Bioinforma , vol.14 , Issue.4 , pp. 235-243


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.