-
2
-
-
63449133366
-
A survey of uncertain data algorithms and applications
-
Aggarwal, C. C., and Yu, P. S. 2009. “A Survey of Uncertain Data Algorithms and Applications,” IEEE Transactions on Knowledge and Data Engineering (21:5), pp. 609-623.
-
(2009)
IEEE Transactions on Knowledge and Data Engineering
, vol.21
, Issue.5
, pp. 609-623
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
3
-
-
84876053703
-
Information theory and an extension of the maximum likelihood principle
-
E. Parzen, K. Tanabe, and G. Kitagawa (eds.), New York: Springer
-
Akaike, H. 1998. “Information Theory and an Extension of the Maximum Likelihood Principle,” in Selected Papers of Hirotugu Akaike, E. Parzen, K. Tanabe, and G. Kitagawa (eds.), New York: Springer, pp. 199-213.
-
(1998)
Selected Papers of Hirotugu Akaike
, pp. 199-213
-
-
Akaike, H.1
-
4
-
-
33847131967
-
The differential use and effect of knowledge-based system explanations in novice and expert judgement decisions
-
Arnold, V., Clark, N., Collier, P. A., Leech, S. A., and Sutton, S. G. 2006. “The Differential Use and Effect of Knowledge-Based System Explanations in Novice and Expert Judgement Decisions,” MIS Quarterly (30:1), pp. 79-97.
-
(2006)
MIS Quarterly
, vol.30
, Issue.1
, pp. 79-97
-
-
Arnold, V.1
Clark, N.2
Collier, P.A.3
Leech, S.A.4
Sutton, S.G.5
-
6
-
-
0000353178
-
A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
-
Baum, L. E., Petrie, T., Soules, G., and Weiss, N. 1970. “A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains,” The Annals of Mathematical Statistics (41:1), pp. 164-171.
-
(1970)
The Annals of Mathematical Statistics
, vol.41
, Issue.1
, pp. 164-171
-
-
Baum, L.E.1
Petrie, T.2
Soules, G.3
Weiss, N.4
-
8
-
-
80055063557
-
Process diagnostics using trace alignment: Opportunities, issues, and challenges
-
Bose, R. P. J. C., and van der Aalst, W. M. P. 2012. “Process Diagnostics Using Trace Alignment: Opportunities, Issues, and Challenges,” Information Systems (37:2), pp. 117-141.
-
(2012)
Information Systems
, vol.37
, Issue.2
, pp. 117-141
-
-
Bose, R.P.J.C.1
van der Aalst, W.M.P.2
-
9
-
-
54349091536
-
Workflow mining for visualization and analysis of surgeries
-
Blum, T., Padoy, N., Feußner, H., and Navab, N. 2008. “Workflow Mining for Visualization and Analysis of Surgeries,” International Journal of Computer Assisted Radiology and Surgery (3:5), pp. 379-386.
-
(2008)
International Journal of Computer Assisted Radiology and Surgery
, vol.3
, Issue.5
, pp. 379-386
-
-
Blum, T.1
Padoy, N.2
Feußner, H.3
Navab, N.4
-
11
-
-
53549114249
-
Selecting hidden Markov model state number with cross-validated likelihood
-
Celelux, G., and Durant, J. 2008. “Selecting Hidden Markov Model State Number with Cross-Validated Likelihood,” Computational Statistics (23:4), pp. 541-564.
-
(2008)
Computational Statistics
, vol.23
, Issue.4
, pp. 541-564
-
-
Celelux, G.1
Durant, J.2
-
12
-
-
33746349812
-
Probabilistic models of language processing and acquisition
-
Chater, N., and Manning, C. D. 2006. “Probabilistic Models of Language Processing and Acquisition,” Trends in Cognitive Sciences (10:7), pp. 335-344.
-
(2006)
Trends in Cognitive Sciences
, vol.10
, Issue.7
, pp. 335-344
-
-
Chater, N.1
Manning, C.D.2
-
13
-
-
84916597404
-
Business intelligence and analytics: From big data to big impact
-
Chen, H., and Storey, V. C. 2012. “Business Intelligence and Analytics: From Big Data to Big Impact,” MIS Quarterly (36:4), pp. 1165-1188.
-
(2012)
MIS Quarterly
, vol.36
, Issue.4
, pp. 1165-1188
-
-
Chen, H.1
Storey, V.C.2
-
14
-
-
84898796363
-
Big data: A survey
-
Chen, M., Shiwen, M., and Liu, Y. 2014. “Big Data: A Survey,” Mobile Networks and Applications (19:2), pp. 171-209.
-
(2014)
Mobile Networks and Applications
, vol.19
, Issue.2
, pp. 171-209
-
-
Chen, M.1
Shiwen, M.2
Liu, Y.3
-
15
-
-
0032108294
-
Discovering Models of Software Processes from Event-based Data
-
Cook, J. E., and Wolf, A. L. 1998. “Discovering Models of Software Processes from Event-based Data,” ACM Transactions on Software Engineering and Methodology (7:3), pp. 215-249.
-
(1998)
ACM Transactions on Software Engineering and Methodology
, vol.7
, Issue.3
, pp. 215-249
-
-
Cook, J.E.1
Wolf, A.L.2
-
16
-
-
0031096959
-
Petrify: A tool for manipulating concurrent specifications and synthesis of asynchronous controllers
-
Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., and Yakovlev, A. 1997. “Petrify: A Tool for Manipulating Concurrent Specifications and Synthesis of Asynchronous Controllers,” IEICE Transactions on Information and Systems (E80-D:3), pp. 315-325.
-
(1997)
IEICE Transactions on Information and Systems
, vol.E80-D
, Issue.3
, pp. 315-325
-
-
Cortadella, J.1
Kishinevsky, M.2
Kondratyev, A.3
Lavagno, L.4
Yakovlev, A.5
-
17
-
-
19944393257
-
A bibliographical study of grammatical inference
-
de la Higuera, C. 2005. “A Bibliographical Study of Grammatical Inference,” Pattern Recognition (38:9), pp. 1332-1348.
-
(2005)
Pattern Recognition
, vol.38
, Issue.9
, pp. 1332-1348
-
-
de la Higuera, C.1
-
19
-
-
44349169837
-
-
unpublished Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
-
de Medeiros, A. K. 2006. Genetic Process Mining, unpublished Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
-
(2006)
Genetic Process Mining
-
-
de Medeiros, A.K.1
-
20
-
-
84861093725
-
A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs
-
de Weerdt, J., de Backer, M., Vanthienen, J., and Baesens, B. 2012. “A Multi-Dimensional Quality Assessment of State-of-the-Art Process Discovery Algorithms Using Real-Life Event Logs,” Information Systems (37:7), pp. 654-676.
-
(2012)
Information Systems
, vol.37
, Issue.7
, pp. 654-676
-
-
de Weerdt, J.1
de Backer, M.2
Vanthienen, J.3
Baesens, B.4
-
21
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A., Laird, N., and Rubin, D. 1977. “Maximum Likelihood from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society. Series B (Methodological) (39:1), pp. 1-22.
-
(1977)
Journal of the Royal Statistical Society. Series B (Methodological)
, vol.39
, Issue.1
, pp. 1-22
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
22
-
-
70349325936
-
Discovering process models from unlabelled event logs
-
U. Dayal, J. Eder, J. Koehler, and H. A. Reijers (eds.), Berlin: Springer
-
th International Conference on Business Process Management, U. Dayal, J. Eder, J. Koehler, and H. A. Reijers (eds.), Berlin: Springer, pp. 143-158.
-
(2009)
th International Conference on Business Process Management
, pp. 143-158
-
-
Ferreira, D.R.1
Gillblad, D.2
-
23
-
-
84872817639
-
Discovering context-aware models for predicting business process performances
-
R. Meersman, H. Panetto, T. Dillon, S. Rinderle-Ma, Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, and I. F. Cruz (eds.), Berlin: Springer
-
Folino, F., Guarascio, M., and Pontieri, L. 2012. “Discovering Context-Aware Models for Predicting Business Process Performances,” in On the Move to Meaningful Internet Systems: OTM 2012, R. Meersman, H. Panetto, T. Dillon, S. Rinderle-Ma, P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, and I. F. Cruz (eds.), Berlin: Springer, pp. 287-304.
-
(2012)
On the Move to Meaningful Internet Systems: OTM 2012
, pp. 287-304
-
-
Folino, F.1
Guarascio, M.2
Pontieri, L.3
-
24
-
-
80053359625
-
A comparison of Bayesian estimators for unsupervised hidden Markov model POS taggers
-
Stroudsburg, PA: Association for Computational Linguistics
-
Gao, J., and Johnson, M. 2008. “A Comparison of Bayesian Estimators for Unsupervised Hidden Markov Model POS Taggers,” in Proceedings of the Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA: Association for Computational Linguistics, pp. 344-352.
-
(2008)
Proceedings of the Conference on Empirical Methods in Natural Language Processing
, pp. 344-352
-
-
Gao, J.1
Johnson, M.2
-
25
-
-
67650447343
-
Robust process discovery with artificial negative events
-
Goedertier, S., Martens, D., Vanthienen, J., and Baesens, B. 2009. “Robust Process Discovery with Artificial Negative Events,” Journal of Machine Learning Research (10), pp. 1305-1340.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1305-1340
-
-
Goedertier, S.1
Martens, D.2
Vanthienen, J.3
Baesens, B.4
-
26
-
-
84876846839
-
Positioning and presenting design science research for maximum impact
-
Gregor, S., and Hevner, A. R. 2013. “Positioning and Presenting Design Science Research for Maximum Impact,” MIS Quarterly (37:2), pp. 337-355.
-
(2013)
MIS Quarterly
, vol.37
, Issue.2
, pp. 337-355
-
-
Gregor, S.1
Hevner, A.R.2
-
27
-
-
0346339692
-
Businessprocessintelligence
-
Grigori, D., Casati, F., Castellanos, M., and Dayal, U. 2004. “BusinessProcessIntelligence,”ComputersinIndustry(53:3),pp. 321-343.
-
(2004)
ComputersinIndustry
, vol.53
, Issue.3
, pp. 321-343
-
-
Grigori, D.1
Casati, F.2
Castellanos, M.3
Dayal, U.4
-
28
-
-
38049156249
-
Fuzzy mining: Adaptive process simplification based on multi-perspective metrics
-
G. Alonso, Dadam, and M. Rosemann (eds.), Berlin: Springer
-
th International Conference on Business Process Management, G. Alonso, P. Dadam, and M. Rosemann (eds.), Berlin: Springer, pp. 328-343.
-
(2007)
th International Conference on Business Process Management
, pp. 328-343
-
-
Günther, C.W.1
van der Aalst, W.M.P.2
-
30
-
-
0348230613
-
Workflow mining with inwolve
-
Herbst, J., and Karagiannis, D. 2004. “Workflow Mining with InWoLvE,” Computers in Industry (53:3), pp. 245-264.
-
(2004)
Computers in Industry
, vol.53
, Issue.3
, pp. 245-264
-
-
Herbst, J.1
Karagiannis, D.2
-
32
-
-
84903898453
-
TREBA: Efficient numerically stable EM for PFA
-
September 5-8, 2012, University of Maryland, College Park
-
th International Conference on Grammatical Inference, September 5-8, 2012, University of Maryland, College Park, pp. 249-253.
-
(2012)
th International Conference on Grammatical Inference
, pp. 249-253
-
-
Hulden, M.1
-
33
-
-
84864120408
-
Beyond process monitoring: A proof-of-concept of event-driven business activity management
-
Janiesch, C., Matzner, M., and Müller, O. 2012. “Beyond Process Monitoring: A Proof-of-Concept of Event-Driven Business Activity Management,” Business Process Management Journal (18:4), pp. 625-643.
-
(2012)
Business Process Management Journal
, vol.18
, Issue.4
, pp. 625-643
-
-
Janiesch, C.1
Matzner, M.2
Müller, O.3
-
34
-
-
84863115591
-
Analysis of productive learning behaviors in a structured inquiry cycle using hidden Markov models
-
R. S. J. D. Baker, A. Merceron, and I. Pavlik Jr. (eds.), Pittsburgh, PA
-
rd International Conference on Educational Data Mining, R. S. J. D. Baker, A. Merceron, and P. I. Pavlik Jr. (eds.), Pittsburgh, PA, pp. 81-90.
-
(2010)
rd International Conference on Educational Data Mining
, pp. 81-90
-
-
Jeong, H.1
Biswas, G.2
Johnson, J.3
Howard, L.4
-
35
-
-
0037469124
-
Choosing initial values for the EM algorithm for finite mixtures
-
Karlis, D., and Xekalaki, E. 2003. “Choosing Initial Values for the EM Algorithm for Finite Mixtures,” Computational Statistics & Data Analysis (41:2), pp. 577-590.
-
(2003)
Computational Statistics & Data Analysis
, vol.41
, Issue.2
, pp. 577-590
-
-
Karlis, D.1
Xekalaki, E.2
-
36
-
-
77954295387
-
How incorporating feedback mechanisms in a DSS affects DSS evaluations
-
Kayande, U., de Bruyn, A., Lilien, G. L., Rangaswamy, A., and van Bruggen, G. H. 2009. “How Incorporating Feedback Mechanisms in a DSS Affects DSS Evaluations,” Information Systems Research (20:4), pp. 527-546.
-
(2009)
Information Systems Research
, vol.20
, Issue.4
, pp. 527-546
-
-
Kayande, U.1
de Bruyn, A.2
Lilien, G.L.3
Rangaswamy, A.4
van Bruggen, G.H.5
-
37
-
-
84903897772
-
Simple variablelengthN-gramsforprobabilisticautomatalearning
-
September5-8,2012,UniversityofMaryland, College Park
-
th International Conference on GrammaticalInference,September5-8,2012,UniversityofMaryland, College Park, pp. 254-258.
-
(2012)
th International Conference on GrammaticalInference
, pp. 254-258
-
-
Kepler, F.N.1
Mergen, S.L.S.2
Billa, C.Z.3
-
38
-
-
84904580604
-
Constructing decision trees from process logs for performer recommendation
-
N. Lohmann, M. Song, and Wohed (eds.), Berlin: Springer
-
Kim, A., Obregon, J., and Jung, J. 2014. “Constructing Decision Trees from Process Logs for Performer Recommendation,” in Business Process Management Workshops, N. Lohmann, M. Song, and P. Wohed (eds.), Berlin: Springer, pp. 224-236.
-
(2014)
Business Process Management Workshops
, pp. 224-236
-
-
Kim, A.1
Obregon, J.2
Jung, J.3
-
39
-
-
70649111792
-
-
Cambridge, MA: MIT Press
-
Koller, D., and Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques, Foundations, Adaptive Computation and Machine Learning, Cambridge, MA: MIT Press.
-
(2009)
Probabilistic Graphical Models: Principles and Techniques, Foundations, Adaptive Computation and Machine Learning
-
-
Koller, D.1
Friedman, N.2
-
40
-
-
84943709252
-
Use of ranks in onecriterionvarianceanalysis
-
Kruskal, W. H., Wallis, W. A. 1952. “Use of Ranks in OneCriterionVarianceAnalysis,”JournaloftheAmericanStatistical Association (47:260), pp. 583-621.
-
(1952)
JournaloftheAmericanStatistical Association
, vol.47
, Issue.260
, pp. 583-621
-
-
Kruskal, W.H.1
Wallis, W.A.2
-
41
-
-
84958044063
-
A Markov prediction model for data-driven semi-structured business processes
-
Lakshmanan, G. T., Shamsi, D., Doganata, Y. N., Unuvar, M., and Khalaf, R. 2015. “A Markov Prediction Model for Data-Driven Semi-Structured Business Processes,” Knowledge and Information Systems (42:1), pp. 97-126.
-
(2015)
Knowledge and Information Systems
, vol.42
, Issue.1
, pp. 97-126
-
-
Lakshmanan, G.T.1
Shamsi, D.2
Doganata, Y.N.3
Unuvar, M.4
Khalaf, R.5
-
42
-
-
38049066975
-
Process mining: Extending αalgorithm to mine duplicate tasks in process logs
-
K. C. C.-C. Chang, W. Wang, L. Chen, C. A. Ellis, C.-H. Hsu, A, C, Tsoi, and H. Wang (eds.), Berlin: Springer
-
Li, J., Liu, D., and Yang, B. 2007. “Process Mining: Extending αAlgorithm to Mine Duplicate Tasks in Process Logs,” in Advances in Web and Network Technologies, and Information Management, K. C. C.-C. Chang, W. Wang, L. Chen, C. A. Ellis, C.-H. Hsu, A, C, Tsoi, and H. Wang (eds.), Berlin: Springer, pp. 396-407.
-
(2007)
Advances in Web and Network Technologies, and Information Management
, pp. 396-407
-
-
Li, J.1
Liu, D.2
Yang, B.3
-
43
-
-
9144266376
-
DSS effectiveness in marketing resource allocation decisions: Reality vs. Perception
-
Lilien, G. L., Rangaswamy, A., van Bruggen, G. H., and Starke, K. 2004. “DSS Effectiveness in Marketing Resource Allocation Decisions: Reality vs. Perception,” Information Systems Research (15:3), pp. 216-235.
-
(2004)
Information Systems Research
, vol.15
, Issue.3
, pp. 216-235
-
-
Lilien, G.L.1
Rangaswamy, A.2
van Bruggen, G.H.3
Starke, K.4
-
44
-
-
84946124910
-
Game changers: Five opportunities for US growth and renewal
-
Lund, S., Manyika, J., Nyquist, S., Mendonca, L., and Ramaswamy, S. 2013. “Game Changers: Five Opportunities for US Growth and Renewal,” McKinsey Global Institute Report (available at http://www.mckinsey.com/global-themes/americas/us-gamechangers).
-
(2013)
McKinsey Global Institute Report
-
-
Lund, S.1
Manyika, J.2
Nyquist, S.3
Mendonca, L.4
Ramaswamy, S.5
-
45
-
-
84903201843
-
Predictive monitoring of business processes
-
M. Jarke, J. Mylopoulos, C. Quix, C. Rolland, Y. Manolopoulos, H. Mouratidis, and J. Horkoff (eds.), Berlin: Springer
-
Maggi, F. M., di Francescomarino, C., Dumas, M., and Ghidini, C. 2014. “Predictive Monitoring of Business Processes,” in Advanced Information Systems Engineering, M. Jarke, J. Mylopoulos, C. Quix, C. Rolland, Y. Manolopoulos, H. Mouratidis, and J. Horkoff (eds.), Berlin: Springer, pp. 457-472.
-
(2014)
Advanced Information Systems Engineering
, pp. 457-472
-
-
Maggi, F.M.1
di Francescomarino, C.2
Dumas, M.3
Ghidini, C.4
-
46
-
-
84919337364
-
Explaining data-driven document classifications
-
Martens, D., and Provost, F. 2014. “Explaining Data-Driven Document Classifications,” MIS Quarterly (38:1), pp. 73-100.
-
(2014)
MIS Quarterly
, vol.38
, Issue.1
, pp. 73-100
-
-
Martens, D.1
Provost, F.2
-
47
-
-
0030287048
-
The expectation-maximization algorithm
-
Moon, T. K. 1996. “The Expectation-Maximization Algorithm,” IEEE Signal Processing Magazine (13:6), pp. 47-60
-
(1996)
IEEE Signal Processing Magazine
, vol.13
, Issue.6
, pp. 47-60
-
-
Moon, T.K.1
-
48
-
-
0024645936
-
Petri nets: Properties, analysis and applications
-
Murata, T. 1989. “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE (77:4), pp. 541-580.
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.4
, pp. 541-580
-
-
Murata, T.1
-
51
-
-
0037030641
-
Computationalandevolutionaryaspectsoflanguage
-
Nowak, M., Komarova, N. L., and Niyogi, P. 2002. “ComputationalandEvolutionaryAspectsofLanguage,”Nature(417),pp. 611-617.
-
(2002)
Nature
, vol.417
, pp. 611-617
-
-
Nowak, M.1
Komarova, N.L.2
Niyogi, P.3
-
53
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
Rabiner, L. R. 1989. “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings of the IEEE (77:2), pp. 257-286.
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.R.1
-
54
-
-
0032049450
-
On the learnability and usage of acyclic probabilistic finite automata
-
Ron, D., Singer, Y., and Tishby, N. 1998. “On the Learnability and Usage of Acyclic Probabilistic Finite Automata,” Journal of Computer and System Sciences (56:2), pp. 133-152.
-
(1998)
Journal of Computer and System Sciences
, vol.56
, Issue.2
, pp. 133-152
-
-
Ron, D.1
Singer, Y.2
Tishby, N.3
-
55
-
-
33646907991
-
Two decades of statistical language modeling: Where do we go from here?
-
Rosenfeld, R. 2000. “Two Decades of Statistical Language Modeling: Where Do We Go From Here?,” Proceedings of the IEEE (88:8), pp. 1270-1278.
-
(2000)
Proceedings of the IEEE
, vol.88
, Issue.8
, pp. 1270-1278
-
-
Rosenfeld, R.1
-
56
-
-
35748949584
-
Conformance checking of processes based on monitoring real behavior
-
Rozinat, A., and van der Aalst, W. M. P. 2008. “Conformance Checking of Processes Based on Monitoring Real Behavior,” Information Systems (33:1), pp. 64-95.
-
(2008)
Information Systems
, vol.33
, Issue.1
, pp. 64-95
-
-
Rozinat, A.1
van der Aalst, W.M.P.2
-
58
-
-
84886505897
-
Marginalizing out transition probabilities for several subclasses of PFAS
-
J. Heinz, C. de la Higuera, and T. Oates (eds.), September 5-8, 2012, University of Maryland, College Park
-
th International Conference on Grammatical Inference, J. Heinz, C. de la Higuera, and T. Oates (eds.), September 5-8, 2012, University of Maryland, College Park, pp. 259-263.
-
(2012)
th International Conference on Grammatical Inference
, pp. 259-263
-
-
Shibata, C.1
Yoshinaka, R.2
-
59
-
-
80051736192
-
Predictive analytics in information systems research
-
Shmueli, G., and Koppius, O. R. 2011. “Predictive Analytics in Information Systems Research,” MIS Quarterly (35:3), pp. 553-572.
-
(2011)
MIS Quarterly
, vol.35
, Issue.3
, pp. 553-572
-
-
Shmueli, G.1
Koppius, O.R.2
-
62
-
-
38949216693
-
A review of business process mining: State-of-the-art and future trends
-
Tiwari, A., Turner, C. J., and Majeed, B. 2008. “A Review of Business Process Mining: State-of-the-Art and Future Trends,” Business Process Management Journal (14:1), pp. 5-22.
-
(2008)
Business Process Management Journal
, vol.14
, Issue.1
, pp. 5-22
-
-
Tiwari, A.1
Turner, C.J.2
Majeed, B.3
-
63
-
-
84861823185
-
Business process mining: From theory to practice
-
Turner, C. J., Tiwari, A., Olaiya, R., and Xu, Y. 2012. “Business Process Mining: From Theory to Practice,” Business Process Management Journal (18:3), pp. 493-512.
-
(2012)
Business Process Management Journal
, vol.18
, Issue.3
, pp. 493-512
-
-
Turner, C.J.1
Tiwari, A.2
Olaiya, R.3
Xu, Y.4
-
64
-
-
0032029288
-
Deterministic annealing EM algorithm
-
Ueda, N., and Nakano, R. 1998. “Deterministic Annealing EM Algorithm,” Neural Networks (11:2), pp. 271-282.
-
(1998)
Neural Networks
, vol.11
, Issue.2
, pp. 271-282
-
-
Ueda, N.1
Nakano, R.2
-
66
-
-
69849085439
-
Tomtom for Business process management (TomTOM4BPM)
-
van Eck, J. Gordijn, and R. Wieringa (eds.), Berlin: Springer
-
van der Aalst, W. M. P. 2009. “TomTom for Business Process Management (TomTom4BPM),” in Advanced Information Systems Engineering, P. van Eck, J. Gordijn, and R. Wieringa (eds.), Berlin: Springer, pp. 2-5.
-
(2009)
Advanced Information Systems Engineering
, pp. 2-5
-
-
van der Aalst, W.M.P.1
-
68
-
-
84879849848
-
Business process management: A comprehensive survey
-
van der Aalst, W. M. P. 2013. “Business Process Management: A Comprehensive Survey,” ISRN Software Engineering (http://dx.doi.org/10.1155/2013/507984), pp. 1-37.
-
(2013)
ISRN Software Engineering
, pp. 1-37
-
-
van der Aalst, W.M.P.1
-
69
-
-
84863011087
-
Process mining manifesto
-
F. Daniel, K. Barkaoui, and S. Dustdar (eds.), Berlin: Springer
-
van der Aalst, W. M. P., Adriansyah, A., Alves de Medeiros, A. K., Arcieri, F., Baier, T., Blickle, T., Bose, J. C., van den Brand, P., Brandtjen, R., Buijs, J., et al. 2011. “Process Mining Manifesto,” in Business Process Management Workshops, F. Daniel, K. Barkaoui, and S. Dustdar (eds.), Berlin: Springer, pp. 169-194.
-
(2011)
Business Process Management Workshops
, pp. 169-194
-
-
van der Aalst, W.M.P.1
Adriansyah, A.2
Alves de Medeiros, A.K.3
Arcieri, F.4
Baier, T.5
Blickle, T.6
Bose, J.C.7
van den Brand, P.8
Brandtjen, R.9
Buijs, J.10
-
70
-
-
78149318916
-
Beyond process mining: From the past to present and future
-
B. Pernici (ed.), Berlin: Springer
-
van der Aalst, W. M. P., Pesic, M., and Song, M. 2010. “Beyond Process Mining: From the Past to Present and Future,” in Advanced Information Systems Engineering, B. Pernici (ed.), Berlin: Springer, pp. 38-52.
-
(2010)
Advanced Information Systems Engineering
, pp. 38-52
-
-
van der Aalst, W.M.P.1
Pesic, M.2
Song, M.3
-
71
-
-
72549107971
-
Process mining: A two-step approach to balance between underfitting and overfitting
-
van der Aalst, W. M. P., Rubin, V., Verbeek, H. M. W., van Dongen, B. F., Kindler, E., and Günther, C. W. 2010. “Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting,” Software and Systems Modeling (9:1), pp. 87-111.
-
(2010)
Software and Systems Modeling
, vol.9
, Issue.1
, pp. 87-111
-
-
van der Aalst, W.M.P.1
Rubin, V.2
Verbeek, H.M.W.3
van Dongen, B.F.4
Kindler, E.5
Günther, C.W.6
-
72
-
-
78649485762
-
Time prediction based on process mining
-
van der Aalst, W. M. P., Schonenberg, M. H., and Song, M. 2011. “Time Prediction Based on Process Mining,” Information Systems Journal (36:2), pp. 450-475.
-
(2011)
Information Systems Journal
, vol.36
, Issue.2
, pp. 450-475
-
-
van der Aalst, W.M.P.1
Schonenberg, M.H.2
Song, M.3
-
73
-
-
0037411286
-
Workflow patterns
-
van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., and Barros, A. P. 2003. “Workflow Patterns,” Distributed and Parallel Databases (14:3), pp. 5-51.
-
(2003)
Distributed and Parallel Databases
, vol.14
, Issue.3
, pp. 5-51
-
-
van der Aalst, W.M.P.1
ter Hofstede, A.H.M.2
Kiepuszewski, B.3
Barros, A.P.4
-
74
-
-
0141680986
-
Workflow mining: A survey of issues and approaches
-
van der Aalst, W. M. P., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., and Weijters, A. 2003. “Workflow Mining: A Survey of Issues and Approaches,” Data & Knowledge Engineering (47:2), pp. 237-267.
-
(2003)
Data & Knowledge Engineering
, vol.47
, Issue.2
, pp. 237-267
-
-
van der Aalst, W.M.P.1
van Dongen, B.2
Herbst, J.3
Maruster, L.4
Schimm, G.5
Weijters, A.6
-
75
-
-
4544353101
-
Workflow mining: Discovering process models from event logs
-
van der Aalst, W. M. P., Weijters, T., and Maruster, L. 2004. “Workflow Mining: Discovering Process Models from Event Logs,” IEEE Transactions on Knowledge and Data Engineering (16:9), pp. 1128-1142.
-
(2004)
IEEE Transactions on Knowledge and Data Engineering
, vol.16
, Issue.9
, pp. 1128-1142
-
-
van der Aalst, W.M.P.1
Weijters, T.2
Maruster, L.3
-
76
-
-
77049092374
-
Process discovery using integer linear programming
-
van der Werf, J. M. E. M., van Dongen, B., and Hurkens, C. 2009. “Process Discovery Using Integer Linear Programming,” Fundamenta Informaticae (94:3-4), pp. 387-412.
-
(2009)
Fundamenta Informaticae
, vol.94
, Issue.3-4
, pp. 387-412
-
-
van der Werf, J.M.E.M.1
van Dongen, B.2
Hurkens, C.3
-
79
-
-
84903901199
-
Pautomac: A probabilistic automata and hidden Markov models learning competition
-
Verwer, S., Eyraud, R., and de la Higuera, C. 2014. “PAutomaC: A Probabilistic Automata and Hidden Markov Models Learning Competition,” Machine Learning (96:1-2), pp. 129-154.
-
(2014)
Machine Learning
, vol.96
, Issue.1-2
, pp. 129-154
-
-
Verwer, S.1
Eyraud, R.2
de la Higuera, C.3
-
80
-
-
22944474900
-
Probabilistic finite-state machines—Part I
-
Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., and Carrasco, R. C. 2005. “Probabilistic Finite-State Machines—Part I,” IEEE Transactions on Pattern Analysis and Machine Intelligence (27:7), pp. 1013-1025.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.7
, pp. 1013-1025
-
-
Vidal, E.1
Thollard, F.2
de la Higuera, C.3
Casacuberta, F.4
Carrasco, R.C.5
-
81
-
-
84885643503
-
A principled approach to mining from noisy logs using heuristics miner
-
April 16-19, Singapore
-
Weber, P., Bordbar, B., and Tino, P. 2013. “A Principled Approach to Mining from Noisy Logs Using Heuristics Miner,” in Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining, April 16-19, Singapore, pp. 119-126.
-
(2013)
Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining
, pp. 119-126
-
-
Weber, P.1
Bordbar, B.2
Tino, P.3
-
82
-
-
40549143268
-
-
BETA Working Paper Series, Eindhoven, The Netherlands
-
Weijters, A., van der Aalst, W. M. P., and de Medeiros, A. K. 2006. “Process Mining with the Heuristics Miner Algorithm,” No. 166, BETA Working Paper Series, Eindhoven, The Netherlands, pp. 1-34. (available at http://wwwis.win.tue.nl/~wvdaalst/publications/p314.pdf).
-
(2006)
Process Mining with the Heuristics Miner Algorithm
, Issue.166
, pp. 1-34
-
-
Weijters, A.1
van der Aalst, W.M.P.2
de Medeiros, A.K.3
-
83
-
-
34548089470
-
Mining process models with non-free-choice constructs
-
Wen, L., van der Aalst, W. M. P., Wang, J., and Sun, J. 2007. “Mining Process Models with Non-Free-Choice Constructs,” Data Mining and Knowledge Discovery (15:2), pp. 145-180.
-
(2007)
Data Mining and Knowledge Discovery
, vol.15
, Issue.2
, pp. 145-180
-
-
Wen, L.1
van der Aalst, W.M.P.2
Wang, J.3
Sun, J.4
-
84
-
-
3042824043
-
A study of smoothing methods for language models applied to information retrieval
-
Zhai, C., and Lafferty, J. 2004. “A Study of Smoothing Methods for Language Models Applied to Information Retrieval,” ACM TransactionsonInformationSystems(TOIS)(22:2),pp.179-214.
-
(2004)
ACM TransactionsonInformationSystems(TOIS)
, vol.22
, Issue.2
, pp. 179-214
-
-
Zhai, C.1
Lafferty, J.2
|