메뉴 건너뛰기




Volumn 23, Issue 4, 2008, Pages 541-564

Selecting hidden Markov model state number with cross-validated likelihood

Author keywords

Cross validation; EM algorithm; Hidden Markov models; Missing values at random; Model selection

Indexed keywords


EID: 53549114249     PISSN: 09434062     EISSN: 16139658     Source Type: Journal    
DOI: 10.1007/s00180-007-0097-1     Document Type: Article
Times cited : (136)

References (32)
  • 1
    • 0000501656 scopus 로고
    • Information theory as an extension of the maximum likelihood theory
    • Akademiai Kiado Budapest
    • Akaike H (1973). Information theory as an extension of the maximum likelihood theory. In: Petrov, BN and Csaki, F (eds) Second International Symposium on Information Theory, pp 267-281. Akademiai Kiado, Budapest
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1    Petrov, B.N.2    Csaki, F.3
  • 2
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • 1
    • LE Baum T Petrie G Soules N Weiss 1970 A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains Ann Math Stat 41 1 164 171
    • (1970) Ann Math Stat , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 4
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • 7
    • C Biernacki G Celeux G Govaert 2001 Assessing a mixture model for clustering with the integrated completed likelihood IEEE Trans Pattern Anal Mach Intel 22 7 719 725
    • (2001) IEEE Trans Pattern Anal Mach Intel , vol.22 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 5
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the em algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • 3-4
    • C Biernacki G Celeux G Govaert 2003 Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models Comput Stat Data Anal 41 3-4 561 575
    • (2003) Comput Stat Data Anal , vol.41 , pp. 561-575
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 6
    • 53549095641 scopus 로고    scopus 로고
    • Inference in hidden Markov models
    • Cappé O, Moulines E, Rydén T (eds) Springer, Heidelberg
    • Boucheron S, Gassiat E (2005) Inference in hidden Markov models, chapter order estimation. In: Cappé O, Moulines E, Rydén T (eds) Springer, Heidelberg
    • (2005) Chapter Order Estimation
    • Boucheron, S.1    Gassiat, E.2
  • 8
    • 0024557590 scopus 로고
    • Stochastic models for heterogeneous DNA sequences
    • GA Churchill 1989 Stochastic models for heterogeneous DNA sequences Bull Math Biol 51 79 94
    • (1989) Bull Math Biol , vol.51 , pp. 79-94
    • Churchill, G.A.1
  • 10
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em Algorithm
    • AP Dempster NM Laird DB Rubin 1977 Maximum likelihood from incomplete data via the EM Algorithm J R Stat Soc Ser B 39 1 38
    • (1977) J R Stat Soc ser B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 11
    • 0022205224 scopus 로고
    • Baum's forward-backward Algorithm revisited
    • PA Devijver 1985 Baum's forward-backward Algorithm revisited Pattern Recogn Lett 3 369 373
    • (1985) Pattern Recogn Lett , vol.3 , pp. 369-373
    • Devijver, P.A.1
  • 14
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant Analysis, and density estimation
    • C Fraley AE Raftery 2002 Model-based clustering, discriminant Analysis, and density estimation J Am Stat Assoc 97 611 631
    • (2002) J Am Stat Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 15
    • 0036845464 scopus 로고    scopus 로고
    • Likelihood ratio inequalities with application to various mixtures
    • E Gassiat 2002 Likelihood ratio inequalities with application to various mixtures Ann Inst Henri Poincaré 38 897 906
    • (2002) Ann Inst Henri Poincaré , vol.38 , pp. 897-906
    • Gassiat, E.1
  • 16
    • 0034454408 scopus 로고    scopus 로고
    • The likelihood ratio test for the number of components in a mixture with Markov regime
    • E Gassiat C Kéribin 2000 The likelihood ratio test for the number of components in a mixture with Markov regime ESAIM P S 4 25 52
    • (2000) ESAIM P S , vol.4 , pp. 25-52
    • Gassiat, E.1    Kéribin, C.2
  • 18
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • C Kéribin 2000 Consistent estimation of the order of mixture models Sankhya Ser A 62 49 66
    • (2000) Sankhya ser A , vol.62 , pp. 49-66
    • Kéribin, C.1
  • 19
    • 0012386026 scopus 로고    scopus 로고
    • On a resampling approach to choosing the number of components in normal mixture models
    • Interface Foundation of North America Fairfax Station
    • McLachlan GJ and Peel D (1997). On a resampling approach to choosing the number of components in normal mixture models. In: Billard, L and Fisher, NI (eds) Computing science and statistics, vol 28, pp 260-266. Interface Foundation of North America, Fairfax Station
    • (1997) Computing Science and Statistics, Vol 28 , pp. 260-266
    • McLachlan, G.J.1    Peel, D.2    Billard, L.3    Fisher, N.I.4
  • 21
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected Applications in speech recognition
    • (February)
    • LR Rabiner 1989 A tutorial on hidden Markov models and selected Applications in speech recognition Proc IEEE 77 257 286 (February)
    • (1989) Proc IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 22
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • 2
    • RA Redner HF Walker 1984 Mixture densities, maximum likelihood and the EM algorithm SIAM Rev 26 2 195 239
    • (1984) SIAM Rev , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 24
    • 43949174023 scopus 로고
    • Bayesian estimation of hidden Markov chains: A stochastic implementation
    • 1
    • CP Robert G Celeux J Diebolt 1993 Bayesian estimation of hidden Markov chains: A stochastic implementation Stat Probab Lett 16 1 77 83
    • (1993) Stat Probab Lett , vol.16 , pp. 77-83
    • Robert, C.P.1    Celeux, G.2    Diebolt, J.3
  • 25
    • 11044237669 scopus 로고    scopus 로고
    • Downscaling of daily rainfall occurence over Northeast Brazil using a hidden Markov model
    • 7
    • AW Robertson S Kirshner P Smyth 2004 Downscaling of daily rainfall occurence over Northeast Brazil using a hidden Markov model J Clim 17 7 4407 4424
    • (2004) J Clim , vol.17 , pp. 4407-4424
    • Robertson, A.W.1    Kirshner, S.2    Smyth, P.3
  • 26
    • 21744460005 scopus 로고    scopus 로고
    • Practical Bayesian density estimation using mixtures of normals
    • 439
    • K Roeder L Wasserman 1997 Practical Bayesian density estimation using mixtures of normals J Am Stat Assoc 92 439 894 902
    • (1997) J Am Stat Assoc , vol.92 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 27
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G Schwarz 1978 Estimating the dimension of a model Ann Stat 6 461 464
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 28
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross-validated likelihood
    • 1
    • P Smyth 2000 Model selection for probabilistic clustering using cross-validated likelihood Stat Comput 10 1 63 72
    • (2000) Stat Comput , vol.10 , pp. 63-72
    • Smyth, P.1
  • 30
    • 27944460480 scopus 로고    scopus 로고
    • Can the strengths of AIC and BIC be shared? A confict between model identification and regression estimation
    • Y Yang 2005 Can the strengths of AIC and BIC be shared? A confict between model identification and regression estimation Biometrika 92 937 950
    • (2005) Biometrika , vol.92 , pp. 937-950
    • Yang, Y.1
  • 31
    • 21144472438 scopus 로고
    • Model selection via multifold cross validation
    • 1
    • P Zhang 1993 Model selection via multifold cross validation Ann Stat 21 1 299 313
    • (1993) Ann Stat , vol.21 , pp. 299-313
    • Zhang, P.1
  • 32
    • 34247243220 scopus 로고    scopus 로고
    • A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data
    • 1
    • NR Zhang DO Siegmund 2007 A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data Biometrics 63 1 22 32
    • (2007) Biometrics , vol.63 , pp. 22-32
    • Zhang, N.R.1    Siegmund, D.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.