-
1
-
-
84862583428
-
-
D. Y.-K. Chen, R. H. Pouwer and J. A. Richard, Chem. Soc. Rev., 2012, 41, 4631;
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 4631
-
-
Chen, D.Y.-K.1
Pouwer, R.H.2
Richard, J.A.3
-
3
-
-
0038222536
-
-
For a review, see a
-
For a review, see: a) H. Lebel, J. F. Marcoux, C. Molinaro and A. B. Charette, Chem. Rev., 2003, 103, 977;
-
(2003)
Chem. Rev.
, vol.103
, pp. 977
-
-
Lebel, H.1
Marcoux, J.F.2
Molinaro, C.3
Charette, A.B.4
-
4
-
-
79961152083
-
-
C. R. Solorio-Alvarado, Y. Wang and A. M. Echavarren, J. Am. Chem. Soc., 2011, 133, 11952;
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 11952
-
-
Solorio-Alvarado, C.R.1
Wang, Y.2
Echavarren, A.M.3
-
5
-
-
84864755822
-
-
R. Vicente, J. González, L. Riesgo, J. González and L. A. López, Angew. Chem. Int. Ed., 2012, 51, 8063;
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 8063
-
-
Vicente, R.1
González, J.2
Riesgo, L.3
González, J.4
López, L.A.5
-
6
-
-
84930655372
-
-
Angew. Chem., 2012, 124, 8187;
-
(2012)
Angew. Chem.
, vol.124
, pp. 8187
-
-
-
7
-
-
84872495336
-
-
P. S. Coelho, E. M. Brustad, A. Kannan and F. H. Arnold, Science, 2013, 339, 307;
-
(2013)
Science
, vol.339
, pp. 307
-
-
Coelho, P.S.1
Brustad, E.M.2
Kannan, A.3
Arnold, F.H.4
-
8
-
-
84915820943
-
-
P. Cotugno, A. Monopoli, F. Ciminale, A. Milella and A. Nacci, Angew. Chem. Int. Ed., 2014, 53, 13563;
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 13563
-
-
Cotugno, P.1
Monopoli, A.2
Ciminale, F.3
Milella, A.4
Nacci, A.5
-
9
-
-
85017574326
-
-
Angew. Chem., 2014, 126, 13781;
-
(2014)
Angew. Chem.
, vol.126
, pp. 13781
-
-
-
11
-
-
84942673021
-
-
M. J. González, J. González, L. A. López and R. Vicente, Angew. Chem. Int. Ed., 2015, 54, 12139;
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 12139
-
-
González, M.J.1
González, J.2
López, L.A.3
Vicente, R.4
-
12
-
-
84971341754
-
-
Angew. Chem., 2015, 127, 12307;
-
(2015)
Angew. Chem.
, vol.127
, pp. 12307
-
-
-
14
-
-
84962952579
-
-
Angew. Chem., 2015, 127, 15058;
-
(2015)
Angew. Chem.
, vol.127
, pp. 15058
-
-
-
16
-
-
85017592733
-
-
Angew. Chem., 2016, 128, 3721;
-
(2016)
Angew. Chem.
, vol.128
, pp. 3721
-
-
-
17
-
-
85005808040
-
-
P. Bajaj, G. Sreenilayam, V. Tyagi and R. Fasan, Angew. Chem. Int. Ed., 2016, 55, 16110;
-
(2016)
Angew. Chem. Int. Ed.
, vol.55
, pp. 16110
-
-
Bajaj, P.1
Sreenilayam, G.2
Tyagi, V.3
Fasan, R.4
-
18
-
-
85017582884
-
-
Angew. Chem., 2016, 128, 26344;
-
(2016)
Angew. Chem.
, vol.128
, pp. 26344
-
-
-
19
-
-
85009445461
-
-
J. M. Sarria Toro, C. García-Morales, M. Raducan, E. S. Smirnova, A. M. Echavarren, Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.201611705.
-
(2017)
Angew. Chem. Int. Ed
-
-
Sarria Toro, J.M.1
García-Morales, C.2
Raducan, M.3
Smirnova, E.S.4
Echavarren, A.M.5
-
22
-
-
0001107133
-
-
J. Furukawa, N. Kawabata and J. Nishimura, Tetrahedron Lett., 1966, 7, 3353;
-
(1966)
Tetrahedron Lett.
, vol.7
, pp. 3353
-
-
Furukawa, J.1
Kawabata, N.2
Nishimura, J.3
-
24
-
-
0034671064
-
-
A. B. Charette, S. Francoeur, J. Martel and N. Wilb, Angew. Chem. Int. Ed., 2000, 39, 4539;
-
(2000)
Angew. Chem. Int. Ed.
, vol.39
, pp. 4539
-
-
Charette, A.B.1
Francoeur, S.2
Martel, J.3
Wilb, N.4
-
25
-
-
85010858072
-
-
Angew. Chem., 2000, 112, 4713;
-
(2000)
Angew. Chem.
, vol.112
, pp. 4713
-
-
-
26
-
-
0034825960
-
-
A. B. Charette, A. Beauchemin and S. Francoeur, J. Am. Chem. Soc., 2001, 123, 8139;
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 8139
-
-
Charette, A.B.1
Beauchemin, A.2
Francoeur, S.3
-
27
-
-
84878385469
-
-
L. P. B. Beaulieu, J. F. Schneider and A. B. Charette, J. Am. Chem. Soc., 2013, 135, 7819;
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 7819
-
-
Beaulieu, L.P.B.1
Schneider, J.F.2
Charette, A.B.3
-
28
-
-
84953445653
-
-
S. Taillemaud, N. Diercxsens, A. Gagnon and A. B. Charette, Angew. Chem. Int. Ed., 2015, 54, 14108;
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 14108
-
-
Taillemaud, S.1
Diercxsens, N.2
Gagnon, A.3
Charette, A.B.4
-
29
-
-
85017573929
-
-
Angew. Chem., 2015, 127, 14314.
-
(2015)
Angew. Chem.
, vol.127
, pp. 14314
-
-
-
30
-
-
1542713051
-
-
S. E. Denmark, R. A. Stavenger, A. M. Faucher and J. P. Edwards, J. Org. Chem., 1997, 62, 3375;
-
(1997)
J. Org. Chem.
, vol.62
, pp. 3375
-
-
Denmark, S.E.1
Stavenger, R.A.2
Faucher, A.M.3
Edwards, J.P.4
-
31
-
-
4544241334
-
-
E. V. Guseva, N. V. Volchkov, Y. V. Tomilov and O. M. Nefedov, Eur. J. Org. Chem., 2004, 3136;
-
(2004)
Eur. J. Org. Chem.
, pp. 3136
-
-
Guseva, E.V.1
Volchkov, N.V.2
Tomilov, Y.V.3
Nefedov, O.M.4
-
32
-
-
1342264155
-
-
G. H. Fang, Z. J. Yan and M. Z. Deng, Org. Lett., 2004, 6, 357;
-
(2004)
Org. Lett.
, vol.6
, pp. 357
-
-
Fang, G.H.1
Yan, Z.J.2
Deng, M.Z.3
-
34
-
-
0000977173
-
-
For selected examples with sulfur ylides, see a
-
For selected examples with sulfur ylides, see: a) E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1962, 84, 3782;
-
(1962)
J. Am. Chem. Soc.
, vol.84
, pp. 3782
-
-
Corey, E.J.1
Chaykovsky, M.2
-
36
-
-
0035901642
-
-
V. K. Aggarwal, E. Alonso, G. Fang, M. Ferrara, G. Hynd and M. Porcelloni, Angew. Chem. Int. Ed., 2001, 40, 1433;
-
(2001)
Angew. Chem. Int. Ed.
, vol.40
, pp. 1433
-
-
Aggarwal, V.K.1
Alonso, E.2
Fang, G.3
Ferrara, M.4
Hynd, G.5
Porcelloni, M.6
-
37
-
-
0000799953
-
-
Angew. Chem., 2001, 113, 1482;
-
(2001)
Angew. Chem.
, vol.113
, pp. 1482
-
-
-
39
-
-
2142736027
-
-
Y. G. Gololobov, A. N. Nesmeyanov, V. P. Lysenko and I. E. Boldeskul, Tetrahedron, 1987, 43, 4057;
-
(1987)
Tetrahedron
, vol.43
, pp. 4057
-
-
Gololobov, Y.G.1
Nesmeyanov, A.N.2
Lysenko, V.P.3
Boldeskul, I.E.4
-
40
-
-
0037450150
-
-
C. D. Papageorgiou, S. V. Ley and M. J. Gaunt, Angew. Chem. Int. Ed., 2003, 42, 828;
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 828
-
-
Papageorgiou, C.D.1
Ley, S.V.2
Gaunt, M.J.3
-
41
-
-
85017589742
-
-
Angew. Chem., 2003, 115, 852;
-
(2003)
Angew. Chem.
, vol.115
, pp. 852
-
-
-
42
-
-
84906254558
-
-
J. M. Sarria Toro, T. den Hartog and P. Chen, Chem. Commun., 2014, 50, 10608.
-
(2014)
Chem. Commun.
, vol.50
, pp. 10608
-
-
Sarria Toro, J.M.1
den Hartog, T.2
Chen, P.3
-
43
-
-
84894520118
-
-
For recent alternative catalytic methylenation processes, see a
-
For recent alternative catalytic methylenation processes, see: a) T. Den Hartog, J. M. S. Toro and P. Chen, Org. Lett., 2014, 16, 1100;
-
(2014)
Org. Lett.
, vol.16
, pp. 1100
-
-
Den Hartog, T.1
Toro, J.M.S.2
Chen, P.3
-
44
-
-
84940449197
-
-
S. A. Künzi, J. M. Sarria Toro, T. den Hartog and P. Chen, Angew. Chem. Int. Ed., 2015, 54, 10670;
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 10670
-
-
Künzi, S.A.1
Sarria Toro, J.M.2
den Hartog, T.3
Chen, P.4
-
45
-
-
85031972413
-
-
Angew. Chem., 2015, 127, 10817;
-
(2015)
Angew. Chem.
, vol.127
, pp. 10817
-
-
-
47
-
-
85010852230
-
-
Angew. Chem., 2016, 128, 3223;
-
(2016)
Angew. Chem.
, vol.128
, pp. 3223
-
-
-
48
-
-
84958787489
-
-
J. Xu, N. B. Samsuri and H. A. Duong, Chem. Commun., 2016, 52, 3372.
-
(2016)
Chem. Commun.
, vol.52
, pp. 3372
-
-
Xu, J.1
Samsuri, N.B.2
Duong, H.A.3
-
52
-
-
78650614389
-
-
W. I. Dzik, X. Xu, X. P. Zhang, J. N. H. Reek and B. De Bruin, J. Am. Chem. Soc., 2010, 132, 10891.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 10891
-
-
Dzik, W.I.1
Xu, X.2
Zhang, X.P.3
Reek, J.N.H.4
De Bruin, B.5
-
53
-
-
84983344352
-
-
For recent reviews, see a
-
For recent reviews, see: a) M. H. Shaw, J. Twilton and D. W. C. MacMillan, J. Org. Chem., 2016, 81, 6898;
-
(2016)
J. Org. Chem.
, vol.81
, pp. 6898
-
-
Shaw, M.H.1
Twilton, J.2
MacMillan, D.W.C.3
-
55
-
-
68249144236
-
-
D. A. Nagib, M. E. Scott and D. W. C. Macmillan, J. Am. Chem. Soc., 2009, 2, 10875;
-
(2009)
J. Am. Chem. Soc.
, vol.2
, pp. 10875
-
-
Nagib, D.A.1
Scott, M.E.2
Macmillan, D.W.C.3
-
56
-
-
67649625293
-
-
J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson, J. Am. Chem. Soc., 2009, 131, 8756;
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 8756
-
-
Narayanam, J.M.R.1
Tucker, J.W.2
Stephenson, C.R.J.3
-
57
-
-
84866890642
-
-
J. D. Nguyen, E. M. D'Amato, J. M. R. Narayanam and C. R. J. Stephenson, Nat. Chem., 2012, 4, 854;
-
(2012)
Nat. Chem.
, vol.4
, pp. 854
-
-
Nguyen, J.D.1
D'Amato, E.M.2
Narayanam, J.M.R.3
Stephenson, C.R.J.4
-
58
-
-
84861637538
-
-
C. J. Wallentin, J. D. Nguyen, P. Finkbeiner and C. R. J. Stephenson, J. Am. Chem. Soc., 2012, 134, 8875.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 8875
-
-
Wallentin, C.J.1
Nguyen, J.D.2
Finkbeiner, P.3
Stephenson, C.R.J.4
-
59
-
-
85008258418
-
-
A. M. del Hoyo, A. G. Herraiz and M. G. Suero, Angew. Chem. Int. Ed., 2017, 56, 1610;
-
(2017)
Angew. Chem. Int. Ed.
, vol.56
, pp. 1610
-
-
del Hoyo, A.M.1
Herraiz, A.G.2
Suero, M.G.3
-
60
-
-
85017609491
-
-
Angew. Chem., 2017, 129, 1632.
-
(2017)
Angew. Chem.
, vol.129
, pp. 1632
-
-
-
61
-
-
85017664981
-
-
For a description of the proposed mechanism, see ref
-
For a description of the proposed mechanism, see ref.
-
-
-
-
62
-
-
0000004695
-
-
The generation of iodomethyl radical species with CH, I, /BEt, /O, and subsequent 1,4-addition to methyl vinyl ketone to give a Michael adduct, has been reporte
-
The generation of iodomethyl radical species with CH2I2/BEt3/O2 and subsequent 1,4-addition to methyl vinyl ketone to give a Michael adduct, has been reported: K. Nozaki, K. Oshima and K. Utimoto, Bull. Chem. Soc. Jpn., 1991, 64, 403.
-
(1991)
Bull. Chem. Soc. Jpn.
, vol.64
, pp. 403
-
-
Nozaki, K.1
Oshima, K.2
Utimoto, K.3
-
63
-
-
85017613190
-
-
Preliminary results showed that the process carried out with no photocatalyst is sluggish15 % NMR yield of 3a was obtained in combination with a mixture of (E), Z)-chalcone (2.21, 82 % NMR)
-
Preliminary results showed that the process carried out with no photocatalyst is sluggish, and 15 % NMR yield of 3a was obtained in combination with a mixture of (E)-/(Z)-chalcone (2.2:1, 82 % NMR).
-
-
-
-
64
-
-
79551693079
-
-
An experiment carried out with chalcone 1e during 30 h provided cyclopropane 3e in 22 % NMR yield. This result clearly suggests cyclopropane decomposition under the reaction conditions. We believe that an unproductive cyclopropane ring-opening could be occurring through a one-electron reduction of the carbonyl group to the corresponding radical anion. This photoredox process has been exploited by Yoon and co-workers for a [3+2] cycloaddition of aryl cyclopropyl ketone
-
An experiment carried out with chalcone 1e during 30 h provided cyclopropane 3e in 22 % NMR yield. This result clearly suggests cyclopropane decomposition under the reaction conditions. We believe that an unproductive cyclopropane ring-opening could be occurring through a one-electron reduction of the carbonyl group to the corresponding radical anion. This photoredox process has been exploited by Yoon and co-workers for a [3+2] cycloaddition of aryl cyclopropyl ketones: Z. Lu, M. Shen and T. P. Yoon, J. Am. Chem. Soc., 2011, 133, 1162.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 1162
-
-
Lu, Z.1
Shen, M.2
Yoon, T.P.3
-
65
-
-
84899936504
-
-
For examples of photoredox-catalyzed Minisci-type C–H functionalization processes, see a
-
For examples of photoredox-catalyzed Minisci-type C–H functionalization processes, see: a) D. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway and M. Tudge, Angew. Chem. Int. Ed., 2014, 53, 4802;
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 4802
-
-
DiRocco, D.A.1
Dykstra, K.2
Krska, S.3
Vachal, P.4
Conway, D.V.5
Tudge, M.6
-
66
-
-
84938352161
-
-
Angew. Chem., 2014, 126, 4902.
-
(2014)
Angew. Chem.
, vol.126
, pp. 4902
-
-
-
68
-
-
84929343497
-
-
Angew. Chem., 2015, 127, 1585;
-
(2015)
Angew. Chem.
, vol.127
, pp. 1585
-
-
-
70
-
-
84988473970
-
-
G.-X. Li, C. A. Morales-Rivera, Y. Wang, F. Gao, G. He, P. Liu and G. Chen, Chem. Sci., 2016, 7, 6407.
-
(2016)
Chem. Sci.
, vol.7
, pp. 6407
-
-
Li, G.-X.1
Morales-Rivera, C.A.2
Wang, Y.3
Gao, F.4
He, G.5
Liu, P.6
Chen, G.7
-
71
-
-
85017572390
-
-
We observed full starting material conversion for all substrates of Table and no Michael adducts from an incomplete ring-closure event. The low yields observed for some of the cyclopropanes can also be explained as in ref
-
We observed full starting material conversion for all substrates of Table and no Michael adducts from an incomplete ring-closure event. The low yields observed for some of the cyclopropanes can also be explained as in ref.
-
-
-
-
72
-
-
0006170068
-
-
Corey–Chaykovsky methodologies based on sulfur ylides fail to give the cyclopropane core with enones like 4binstead the corresponding oxirane is formed. For a reference, se
-
Corey–Chaykovsky methodologies based on sulfur ylides fail to give the cyclopropane core with enones like 4b, and instead the corresponding oxirane is formed. For a reference, see: M. Lautens, M. L. Maddess, E. L. O. Sauer and S. G. Ouellet, Org. Lett., 2002, 4, 83.
-
(2002)
Org. Lett.
, vol.4
, pp. 83
-
-
Lautens, M.1
Maddess, M.L.2
Sauer, E.L.O.3
Ouellet, S.G.4
-
73
-
-
85017584842
-
-
we cannot rule out the formation of a benzyl radical intermediate in substrates bearing an aromatic ring at the β-position
-
Although our original working hypothesis was based on the formation of an α-carbonyl radical intermediate (Scheme b), we cannot rule out the formation of a benzyl radical intermediate in substrates bearing an aromatic ring at the β-position.
-
-
-
|