메뉴 건너뛰기




Volumn , Issue , 2017, Pages 427-434

Drug side effect prediction through linear neighborhoods and multiple data source integration

Author keywords

Data integration; Drug drug similarity; Side effects

Indexed keywords

BIOINFORMATICS; DRUG INTERACTIONS; FORECASTING; LEARNING SYSTEMS;

EID: 85013311638     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBM.2016.7822555     Document Type: Conference Paper
Times cited : (70)

References (39)
  • 1
    • 26944446576 scopus 로고    scopus 로고
    • Keynote review: Safetypharmacology profiling: An essential tool for successful drug development
    • Whitebread, S., et al., "Keynote review: safetypharmacology profiling: An essential tool for successful drug development", Drug discovery today, 2005, 10, (21), pp. 1421-1433
    • (2005) Drug Discovery Today , vol.10 , Issue.21 , pp. 1421-1433
    • Whitebread, S.1
  • 2
    • 34247604930 scopus 로고    scopus 로고
    • When good drugs go bad
    • Giacomini, K. M., et al., "When good drugs go bad", Nature, 2007, 446, (7139), pp. 975-977
    • (2007) Nature , vol.446 , Issue.7139 , pp. 975-977
    • Giacomini, K.M.1
  • 3
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • Campillos, M., et al., "Drug target identification using side-effect similarity", Science, 2008, 321, (5886), pp. 263266
    • (2008) Science , vol.321 , Issue.5886 , pp. 263266
    • Campillos, M.1
  • 4
    • 65249092595 scopus 로고    scopus 로고
    • Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis
    • Scheiber, J., et al., "Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis", Journal of chemical information and modeling, 2009, 49, (2), pp. 308-317
    • (2009) Journal of Chemical Information and Modeling , vol.49 , Issue.2 , pp. 308-317
    • Scheiber, J.1
  • 5
    • 77449114835 scopus 로고    scopus 로고
    • Predicting drug side-effects by chemical systems biology
    • Tatonetti, N. P., et al., "Predicting drug side-effects by chemical systems biology", Genome Biol, 2009, 10, (9), pp. 238
    • (2009) Genome Biol , vol.10 , Issue.9 , pp. 238
    • Tatonetti, N.P.1
  • 6
    • 67049100457 scopus 로고    scopus 로고
    • Drug discovery using chemical systems biology: Identification of the protein-ligand binding network to explain the side effects of CETP inhibitors
    • Xie, L., et al., "Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors", PLoS computational biology, 2009, 5, (5), pp. e1000387
    • (2009) PLoS Computational Biology , vol.5 , Issue.5 , pp. e1000387
    • Xie, L.1
  • 7
    • 0042468096 scopus 로고    scopus 로고
    • Impact of drug transporter studies on drug discovery and development
    • Mizuno, N., et al., "Impact of drug transporter studies on drug discovery and development", Pharmacol Rev, 2003, 55, (3), pp. 425-461
    • (2003) Pharmacol Rev , vol.55 , Issue.3 , pp. 425-461
    • Mizuno, N.1
  • 8
    • 32344440237 scopus 로고    scopus 로고
    • Analysis of drug-induced effect patterns to link structure and side effects of medicines
    • Fliri, A. F., et al., "Analysis of drug-induced effect patterns to link structure and side effects of medicines", Nat Chem Biol, 2005, 1, (7), pp. 389-397
    • (2005) Nat Chem Biol , vol.1 , Issue.7 , pp. 389-397
    • Fliri, A.F.1
  • 9
    • 22344435687 scopus 로고    scopus 로고
    • Predicting and preventing adverse drug reactions in the very old
    • Merle, L., et al., "Predicting and preventing adverse drug reactions in the very old", Drugs Aging, 2005, 22, (5), pp. 375-392
    • (2005) Drugs Aging , vol.22 , Issue.5 , pp. 375-392
    • Merle, L.1
  • 10
    • 40049100210 scopus 로고    scopus 로고
    • Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure
    • Bender, A., et al., "Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure", ChemMedChem, 2007, 2, (6), pp. 861-873
    • (2007) ChemMedChem , vol.2 , Issue.6 , pp. 861-873
    • Bender, A.1
  • 11
    • 74549202691 scopus 로고    scopus 로고
    • Side effect prediction using cooperative pathways
    • Editor (Ed.)A (Eds.) (IEEE, 2009 edn.)
    • Fukuzaki, M., et al., "Side effect prediction using cooperative pathways", in Editor (Ed.)A (Eds.): 'Book Side effect prediction using cooperative pathways' (IEEE, 2009, edn.), pp. 142-147
    • Book Side Effect Prediction Using Cooperative Pathways , pp. 142-147
    • Fukuzaki, M.1
  • 12
    • 84255163374 scopus 로고    scopus 로고
    • Predicting adverse side effects of drugs
    • Huang, L. C., et al., "Predicting adverse side effects of drugs", BMC genomics, 2011, 12 Suppl 5, pp. S11
    • (2011) BMC Genomics , vol.12 , pp. S11
    • Huang, L.C.1
  • 13
    • 79955969387 scopus 로고    scopus 로고
    • Predicting drug side-effect profiles: A chemical fragment-based approach
    • Pauwels, E., et al., "Predicting drug side-effect profiles: A chemical fragment-based approach", BMC bioinformatics, 2011, 12, pp. 169
    • (2011) BMC Bioinformatics , vol.12 , pp. 169
    • Pauwels, E.1
  • 14
    • 84866460840 scopus 로고    scopus 로고
    • Relating drug-protein interaction network with drug side effects
    • Mizutani, S., et al., "Relating drug-protein interaction network with drug side effects", Bioinformatics, 2012, 28, (18), pp. i522-i528
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. i522-i528
    • Mizutani, S.1
  • 15
    • 84871595040 scopus 로고    scopus 로고
    • Drug side-effect prediction based on the integration of chemical and biological spaces
    • Yamanishi, Y., et al., "Drug side-effect prediction based on the integration of chemical and biological spaces", J Chem Inf Model, 2012, 52, (12), pp. 3284-3292
    • (2012) J Chem Inf Model , vol.52 , Issue.12 , pp. 3284-3292
    • Yamanishi, Y.1
  • 16
    • 84863548955 scopus 로고    scopus 로고
    • Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs
    • Liu, M., et al., "Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs", Journal of the American Medical Informatics Association, 2012, 19, (E1), pp. E28-E35
    • (2012) Journal of the American Medical Informatics Association , vol.19 , Issue.E1 , pp. E28-E35
    • Liu, M.1
  • 17
    • 84879426876 scopus 로고    scopus 로고
    • Integrative relational Machine-Learning Approach for Understanding Drug Side-Effect Profiles
    • Bresso, E., et al., "Integrative relational Machine-Learning Approach for Understanding Drug Side-Effect Profiles", BMC bioinformatics, 2013, 14, (1), pp. 207
    • (2013) BMC Bioinformatics , vol.14 , Issue.1 , pp. 207
    • Bresso, E.1
  • 18
    • 84876575669 scopus 로고    scopus 로고
    • Adverse drug events: Database construction and in silico prediction
    • Cheng, F., et al., "Adverse drug events: database construction and in silico prediction", J Chem Inf Model, 2013, 53, (4), pp. 744-752
    • (2013) J Chem Inf Model , vol.53 , Issue.4 , pp. 744-752
    • Cheng, F.1
  • 19
    • 84872733056 scopus 로고    scopus 로고
    • Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures
    • Huang, L. C., et al., "Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures", Proteomics, 2013, 13, (2), pp. 313-324
    • (2013) Proteomics , vol.13 , Issue.2 , pp. 313-324
    • Huang, L.C.1
  • 20
    • 84894087399 scopus 로고    scopus 로고
    • Determining molecular predictors of adverse drug reactions with causality analysis based on structure learning
    • Liu, M., et al., "Determining molecular predictors of adverse drug reactions with causality analysis based on structure learning", Journal of the American Medical Informatics Association : JAMIA, 2014, 21, (2), pp. 245-251
    • (2014) Journal of the American Medical Informatics Association : JAMIA , vol.21 , Issue.2 , pp. 245-251
    • Liu, M.1
  • 21
    • 84959346216 scopus 로고    scopus 로고
    • Predicting potential side effects of drugs by recommender methods and ensemble learning
    • Zhang, W., et al., "Predicting potential side effects of drugs by recommender methods and ensemble learning", Neurocomputing, 2016, 173, pp. 979-987
    • (2016) Neurocomputing , vol.173 , pp. 979-987
    • Zhang, W.1
  • 22
    • 84946416532 scopus 로고    scopus 로고
    • Predicting drug side effects by multi-label learning and ensemble learning
    • Zhang, W., et al., "Predicting drug side effects by multi-label learning and ensemble learning", BMC bioinformatics, 2015, 16, pp. 365
    • (2015) BMC Bioinformatics , vol.16 , pp. 365
    • Zhang, W.1
  • 23
    • 76149120425 scopus 로고    scopus 로고
    • A side effect resource to capture phenotypic effects of drugs
    • Kuhn, M., et al., "A side effect resource to capture phenotypic effects of drugs", Molecular systems biology, 2010, 6, pp. 343
    • (2010) Molecular Systems Biology , vol.6 , pp. 343
    • Kuhn, M.1
  • 24
    • 67849104638 scopus 로고    scopus 로고
    • PubChem: A public information system for analyzing bioactivities of small molecules
    • (Web Server issue)
    • Wang, Y., et al., "PubChem: A public information system for analyzing bioactivities of small molecules", Nucleic acids research, 2009, 37, (Web Server issue), pp. W623-633
    • (2009) Nucleic Acids Research , vol.37 , pp. W623-633
    • Wang, Y.1
  • 25
    • 78649633211 scopus 로고    scopus 로고
    • PubChem as a public resource for drug discovery
    • Li, Q., et al., "PubChem as a public resource for drug discovery", Drug Discov Today, 2010, 15, (23-24), pp. 10521057
    • (2010) Drug Discov Today , vol.15 , Issue.23-24 , pp. 10521057
    • Li, Q.1
  • 26
    • 33644876210 scopus 로고    scopus 로고
    • DrugBank: A comprehensive resource for in silico drug discovery and exploration
    • (Database issue)
    • Wishart, D. S., et al., "DrugBank: A comprehensive resource for in silico drug discovery and exploration", Nucleic acids research, 2006, 34, (Database issue), pp. D668-672
    • (2006) Nucleic Acids Research , vol.34 , pp. D668-672
    • Wishart, D.S.1
  • 27
    • 38549151817 scopus 로고    scopus 로고
    • DrugBank: A knowledgebase for drugs, drug actions and drug targets
    • (Database issue)
    • Wishart, D. S., et al., "DrugBank: A knowledgebase for drugs, drug actions and drug targets", Nucleic acids research, 2008, 36, (Database issue), pp. D901-906
    • (2008) Nucleic Acids Research , vol.36 , pp. D901-906
    • Wishart, D.S.1
  • 28
    • 78651287426 scopus 로고    scopus 로고
    • DrugBank 3. 0: A comprehensive resource for 'omics' research on drugs
    • (Database issue)
    • Knox, C., et al., "DrugBank 3. 0: A comprehensive resource for 'omics' research on drugs", Nucleic acids research, 2011, 39, (Database issue), pp. D1035-1041
    • (2011) Nucleic Acids Research , vol.39 , pp. D1035-1041
    • Knox, C.1
  • 29
    • 84891767304 scopus 로고    scopus 로고
    • DrugBank 4. 0: Shedding new light ondrug metabolism
    • (Database issue)
    • Law, V, et al., "DrugBank 4. 0: shedding new light ondrug metabolism", Nucleic acids research, 2014, 42, (Database issue), pp. D1091-1097
    • (2014) Nucleic Acids Research , vol.42 , pp. D1091-1097
    • Law, V.1
  • 30
    • 75549090213 scopus 로고    scopus 로고
    • KEGG for representation and analysis of molecular networks involving diseases and drugs
    • (Database issue)
    • Kanehisa, M., et al., "KEGG for representation and analysis of molecular networks involving diseases and drugs", Nucleic acids research, 2010, 38, (Database issue), pp. D355-360
    • (2010) Nucleic Acids Research , vol.38 , pp. D355-360
    • Kanehisa, M.1
  • 33
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang, M.-L., and Zhou, Z.-H., "ML-KNN: A lazy learning approach to multi-label learning", Pattern recognition, 2007, 40, (7), pp. 2038-2048
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 34
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • Madjarov, G., et al., "An extensive experimental comparison of methods for multi-label learning", Pattern Recognition, 2012, 45, (9), pp. 3084-3104
    • (2012) Pattern Recognition , vol.45 , Issue.9 , pp. 3084-3104
    • Madjarov, G.1
  • 35
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar, R., "Ensemble based systems in decision making", Circuits and Systems Magazine, IEEE, 2006, 6, (3), pp. 21-45
    • (2006) Circuits and Systems Magazine, IEEE , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 36
    • 77954259597 scopus 로고    scopus 로고
    • MetaMHC: A meta approach to predict peptides binding to MHC molecules
    • (Web Server issue)
    • Hu, X., et al., "MetaMHC: A meta approach to predict peptides binding to MHC molecules", Nucleic acids research, 2010, 38, (Web Server issue), pp. W474-479
    • (2010) Nucleic Acids Research , vol.38 , pp. W474-479
    • Hu, X.1
  • 37
    • 81255197618 scopus 로고    scopus 로고
    • Ensemble approaches for improving HLA class I-peptide binding prediction
    • Hu, X., et al., "Ensemble approaches for improving HLA class I-peptide binding prediction", Journal of immunological methods, 2011, 374, (1-2), pp. 47-52
    • (2011) Journal of Immunological Methods , vol.374 , Issue.1-2 , pp. 47-52
    • Hu, X.1
  • 38
    • 84898826096 scopus 로고    scopus 로고
    • A combination of feature extraction methods with an ensemble of different classifiers for protein structural class prediction problem
    • Dehzangi, A., et al., "A Combination of Feature Extraction Methods with an Ensemble of Different Classifiers for Protein Structural Class Prediction Problem", IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM, 2013
    • (2013) IEEE/ACM Transactions on Computational Biology and Bioinformatics / IEEE, ACM
    • Dehzangi, A.1
  • 39
    • 84923033977 scopus 로고    scopus 로고
    • An ensemble method with hybrid features to identify extracellular matrix proteins
    • Yang, R., et al., "An ensemble method with hybrid features to identify extracellular matrix proteins", PloS one, 2015, 10, (2), pp. e0117804
    • (2015) PloS One , vol.10 , Issue.2 , pp. e0117804
    • Yang, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.