-
1
-
-
69249187434
-
Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies
-
Roman M. Balabin and Ekaterina I. Lomakina. Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies. Journal of Chemical Physics, 131(7):074104, 2009.
-
(2009)
Journal of Chemical Physics
, vol.131
, Issue.7
, pp. 074104
-
-
Balabin, R.M.1
Lomakina, E.I.2
-
2
-
-
79959480027
-
Support vector machine regression (LS-SVM) - An alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
-
Roman M. Balabin and Ekaterina I. Lomakina. Support vector machine regression (LS-SVM) - an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Physical Chemistry Chemical Physics, 13(24):11710-11718, 2011.
-
(2011)
Physical Chemistry Chemical Physics
, vol.13
, Issue.24
, pp. 11710-11718
-
-
Balabin, R.M.1
Lomakina, E.I.2
-
3
-
-
80052883863
-
Editorial: Charting chemical space: Challenges and opportunities for artificial intelligence and machine learning
-
Pierre Baldi, Klaus-Robert Müller, and Gisbert Schneider. Editorial: Charting chemical space: Challenges and opportunities for artificial intelligence and machine learning. Molecular Informatics, 30(9):751-751, 2011.
-
(2011)
Molecular Informatics
, vol.30
, Issue.9
, pp. 751-751
-
-
Baldi, P.1
Müller, K.-R.2
Schneider, G.3
-
4
-
-
77950441864
-
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
-
Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett., 104(13): 136403, 2010.
-
(2010)
Phys. Rev. Lett.
, vol.104
, Issue.13
, pp. 136403
-
-
Bartók, A.P.1
Payne, M.C.2
Kondor, R.3
Csányi, G.4
-
5
-
-
80053512754
-
Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
-
Jörg Behler. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Physical Chemistry Chemical Physics, 13(40):17930-17955, 2011.
-
(2011)
Physical Chemistry Chemical Physics
, vol.13
, Issue.40
, pp. 17930-17955
-
-
Behler, J.1
-
6
-
-
67649619336
-
970 million druglike small molecules for virtual screening in the chemical universe database GDB-13
-
Lorenz C. Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. Journal of the American Chemical Society, 131 (25):8732-8733, 2009.
-
(2009)
Journal of the American Chemical Society
, vol.131
, Issue.25
, pp. 8732-8733
-
-
Blum, L.C.1
Reymond, J.-L.2
-
7
-
-
78649669320
-
Deep, big, simple neural nets for handwritten digit recognition
-
Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. Deep, big, simple neural nets for handwritten digit recognition. Neural Computation, 22(12):3207-3220, 2010.
-
(2010)
Neural Computation
, vol.22
, Issue.12
, pp. 3207-3220
-
-
Ciresan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
8
-
-
80053558787
-
Natural language processing (almost) from scratch
-
Ronan Collobert, Jason Weston, Lèon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12:2493-2537, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
9
-
-
0036161034
-
Training invariant support vector machines
-
Dennis DeCoste and Bernhard Schölkopf. Training invariant support vector machines. Machine Learning, 46(1-3):161-190, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 161-190
-
-
DeCoste, D.1
Schölkopf, B.2
-
10
-
-
79957495136
-
1-penalized linear mixed-effects models for high dimensional data with application to BCI
-
1-penalized linear mixed-effects models for high dimensional data with application to BCI. NeuroImage, 56(4): 2100-2108, 2011.
-
(2011)
NeuroImage
, vol.56
, Issue.4
, pp. 2100-2108
-
-
Fazli, S.1
Danóczy, M.2
Schelldorfer, J.3
Müller, K.-R.4
-
11
-
-
33745359822
-
The blue obelisk, interoperability in chemical informatics
-
Rajarshi Guha, Michael T. Howard, Geoffrey R. Hutchison, Peter Murray-Rust, Henry Rzepa, Christoph Steinbeck, Jörg Wegner, and Egon L. Willighagen. The blue obelisk, interoperability in chemical informatics. Journal of Chemical Information and Modeling, 46(3):991-998, 2006.
-
(2006)
Journal of Chemical Information and Modeling
, vol.46
, Issue.3
, pp. 991-998
-
-
Guha, R.1
Howard, M.T.2
Hutchison, G.R.3
Murray-Rust, P.4
Rzepa, H.5
Steinbeck, C.6
Wegner, J.7
Willighagen, E.L.8
-
13
-
-
77953628959
-
Finding nature's missing ternary oxide compounds using machine learning and density functional theory
-
Geoffroy Hautier, Christopher C. Fisher, Anubhav Jain, Tim Mueller, and Gerbrand Ceder. Finding nature's missing ternary oxide compounds using machine learning and density functional theory. Chemistry of Materials, 22(12):3762-3767, 2010.
-
(2010)
Chemistry of Materials
, vol.22
, Issue.12
, pp. 3762-3767
-
-
Hautier, G.1
Fisher, C.C.2
Jain, A.3
Mueller, T.4
Ceder, G.5
-
14
-
-
80051609011
-
Learning a better representation of speech soundwaves using restricted boltzmann machines
-
Navdeep Jaitly and Geoffrey E. Hinton. Learning a better representation of speech soundwaves using restricted Boltzmann machines. In ICASSP, pages 5884-5887, 2011.
-
(2011)
ICASSP
, pp. 5884-5887
-
-
Jaitly, N.1
Hinton, G.E.2
-
15
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Yann LeCun, Lèon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
16
-
-
4444243883
-
Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
-
Sönke Lorenz, Axel Groß, and Matthias Scheffler. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chemical Physics Letters, 395(4-6):210-215, 2004.
-
(2004)
Chemical Physics Letters
, vol.395
, Issue.4-6
, pp. 210-215
-
-
Lorenz, S.1
Groß, A.2
Scheffler, M.3
-
17
-
-
33748257982
-
A random-sampling high dimensional model representation neural network for building potential energy surfaces
-
Sergei Manzhos and Tucker Carrington. A random-sampling high dimensional model representation neural network for building potential energy surfaces. J. Chem. Phys., 125:084109, 2006.
-
(2006)
J. Chem. Phys.
, vol.125
, pp. 084109
-
-
Manzhos, S.1
Carrington, T.2
-
19
-
-
0042041206
-
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
-
Anthony K. Rappè, Carla J. Casewit, K. S. Colwell, William A. Goddard, and W. M. Skiff. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25):10024-10035, 1992.
-
(1992)
Journal of the American Chemical Society
, vol.114
, Issue.25
, pp. 10024-10035
-
-
Rappè, A.K.1
Casewit, C.J.2
Colwell, K.S.3
Goddard, W.A.4
Skiff, W.M.5
-
20
-
-
84856512353
-
Fast and accurate modeling of molecular atomization energies with machine learning
-
Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett., 108(5):058301, 2012.
-
(2012)
Phys. Rev. Lett.
, vol.108
, Issue.5
, pp. 058301
-
-
Rupp, M.1
Tkatchenko, A.2
Müller, K.-R.3
Anatole Von Lilienfeld, O.4
-
21
-
-
0005031076
-
Transformation invariance in pattern recognition: Tangent distance and tangent propagation
-
Patrice Simard, Yann LeCun, John S. Denker, and Bernard Victorri. Transformation invariance in pattern recognition: Tangent distance and tangent propagation. In Neural Networks: Tricks of the Trade, pages 239-27, 1996.
-
(1996)
Neural Networks: Tricks of the Trade
, pp. 239-227
-
-
Simard, P.1
LeCun, Y.2
Denker, J.S.3
Victorri, B.4
-
22
-
-
4043137356
-
A tutorial on support vector regression
-
Alex J. Smola and Bernd Schölkopf. A tutorial on support vector regression. Statistics and computing, 14(3):199-222, 2004.
-
(2004)
Statistics and Computing
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
24
-
-
33750193383
-
Molecular grand-canonical ensemble density functional theory and exploration of chemical space
-
O Anatole Von Lilienfeld and Mark E. Tuckerman. Molecular grand-canonical ensemble density functional theory and exploration of chemical space. The Journal of chemical physics, 125(15): 154104, 2006.
-
(2006)
The Journal of Chemical Physics
, vol.125
, Issue.15
, pp. 154104
-
-
Anatole Von Lilienfeld, O.1
Tuckerman, M.E.2
|