메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 440-448

Learning invariant representations of molecules for atomization energy prediction

Author keywords

[No Author keywords available]

Indexed keywords

ACCURATE PREDICTION; ATOMIZATION ENERGIES; INVARIANT REPRESENTATION; MACHINE LEARNING PROBLEM; MOLECULAR ENERGIES; MOLECULAR GEOMETRIES; QUANTUM MECHANICAL; RATIONAL COMPOUND DESIGNS;

EID: 84877770101     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (159)

References (24)
  • 1
    • 69249187434 scopus 로고    scopus 로고
    • Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies
    • Roman M. Balabin and Ekaterina I. Lomakina. Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies. Journal of Chemical Physics, 131(7):074104, 2009.
    • (2009) Journal of Chemical Physics , vol.131 , Issue.7 , pp. 074104
    • Balabin, R.M.1    Lomakina, E.I.2
  • 2
    • 79959480027 scopus 로고    scopus 로고
    • Support vector machine regression (LS-SVM) - An alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
    • Roman M. Balabin and Ekaterina I. Lomakina. Support vector machine regression (LS-SVM) - an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Physical Chemistry Chemical Physics, 13(24):11710-11718, 2011.
    • (2011) Physical Chemistry Chemical Physics , vol.13 , Issue.24 , pp. 11710-11718
    • Balabin, R.M.1    Lomakina, E.I.2
  • 3
    • 80052883863 scopus 로고    scopus 로고
    • Editorial: Charting chemical space: Challenges and opportunities for artificial intelligence and machine learning
    • Pierre Baldi, Klaus-Robert Müller, and Gisbert Schneider. Editorial: Charting chemical space: Challenges and opportunities for artificial intelligence and machine learning. Molecular Informatics, 30(9):751-751, 2011.
    • (2011) Molecular Informatics , vol.30 , Issue.9 , pp. 751-751
    • Baldi, P.1    Müller, K.-R.2    Schneider, G.3
  • 4
    • 77950441864 scopus 로고    scopus 로고
    • Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
    • Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett., 104(13): 136403, 2010.
    • (2010) Phys. Rev. Lett. , vol.104 , Issue.13 , pp. 136403
    • Bartók, A.P.1    Payne, M.C.2    Kondor, R.3    Csányi, G.4
  • 5
    • 80053512754 scopus 로고    scopus 로고
    • Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
    • Jörg Behler. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Physical Chemistry Chemical Physics, 13(40):17930-17955, 2011.
    • (2011) Physical Chemistry Chemical Physics , vol.13 , Issue.40 , pp. 17930-17955
    • Behler, J.1
  • 6
    • 67649619336 scopus 로고    scopus 로고
    • 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13
    • Lorenz C. Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. Journal of the American Chemical Society, 131 (25):8732-8733, 2009.
    • (2009) Journal of the American Chemical Society , vol.131 , Issue.25 , pp. 8732-8733
    • Blum, L.C.1    Reymond, J.-L.2
  • 7
    • 78649669320 scopus 로고    scopus 로고
    • Deep, big, simple neural nets for handwritten digit recognition
    • Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. Deep, big, simple neural nets for handwritten digit recognition. Neural Computation, 22(12):3207-3220, 2010.
    • (2010) Neural Computation , vol.22 , Issue.12 , pp. 3207-3220
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 9
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines
    • Dennis DeCoste and Bernhard Schölkopf. Training invariant support vector machines. Machine Learning, 46(1-3):161-190, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 161-190
    • DeCoste, D.1    Schölkopf, B.2
  • 10
    • 79957495136 scopus 로고    scopus 로고
    • 1-penalized linear mixed-effects models for high dimensional data with application to BCI
    • 1-penalized linear mixed-effects models for high dimensional data with application to BCI. NeuroImage, 56(4): 2100-2108, 2011.
    • (2011) NeuroImage , vol.56 , Issue.4 , pp. 2100-2108
    • Fazli, S.1    Danóczy, M.2    Schelldorfer, J.3    Müller, K.-R.4
  • 13
    • 77953628959 scopus 로고    scopus 로고
    • Finding nature's missing ternary oxide compounds using machine learning and density functional theory
    • Geoffroy Hautier, Christopher C. Fisher, Anubhav Jain, Tim Mueller, and Gerbrand Ceder. Finding nature's missing ternary oxide compounds using machine learning and density functional theory. Chemistry of Materials, 22(12):3762-3767, 2010.
    • (2010) Chemistry of Materials , vol.22 , Issue.12 , pp. 3762-3767
    • Hautier, G.1    Fisher, C.C.2    Jain, A.3    Mueller, T.4    Ceder, G.5
  • 14
    • 80051609011 scopus 로고    scopus 로고
    • Learning a better representation of speech soundwaves using restricted boltzmann machines
    • Navdeep Jaitly and Geoffrey E. Hinton. Learning a better representation of speech soundwaves using restricted Boltzmann machines. In ICASSP, pages 5884-5887, 2011.
    • (2011) ICASSP , pp. 5884-5887
    • Jaitly, N.1    Hinton, G.E.2
  • 15
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Yann LeCun, Lèon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 16
    • 4444243883 scopus 로고    scopus 로고
    • Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
    • Sönke Lorenz, Axel Groß, and Matthias Scheffler. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chemical Physics Letters, 395(4-6):210-215, 2004.
    • (2004) Chemical Physics Letters , vol.395 , Issue.4-6 , pp. 210-215
    • Lorenz, S.1    Groß, A.2    Scheffler, M.3
  • 17
    • 33748257982 scopus 로고    scopus 로고
    • A random-sampling high dimensional model representation neural network for building potential energy surfaces
    • Sergei Manzhos and Tucker Carrington. A random-sampling high dimensional model representation neural network for building potential energy surfaces. J. Chem. Phys., 125:084109, 2006.
    • (2006) J. Chem. Phys. , vol.125 , pp. 084109
    • Manzhos, S.1    Carrington, T.2
  • 19
    • 0042041206 scopus 로고
    • UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
    • Anthony K. Rappè, Carla J. Casewit, K. S. Colwell, William A. Goddard, and W. M. Skiff. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25):10024-10035, 1992.
    • (1992) Journal of the American Chemical Society , vol.114 , Issue.25 , pp. 10024-10035
    • Rappè, A.K.1    Casewit, C.J.2    Colwell, K.S.3    Goddard, W.A.4    Skiff, W.M.5
  • 20
    • 84856512353 scopus 로고    scopus 로고
    • Fast and accurate modeling of molecular atomization energies with machine learning
    • Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett., 108(5):058301, 2012.
    • (2012) Phys. Rev. Lett. , vol.108 , Issue.5 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Müller, K.-R.3    Anatole Von Lilienfeld, O.4
  • 21
    • 0005031076 scopus 로고    scopus 로고
    • Transformation invariance in pattern recognition: Tangent distance and tangent propagation
    • Patrice Simard, Yann LeCun, John S. Denker, and Bernard Victorri. Transformation invariance in pattern recognition: Tangent distance and tangent propagation. In Neural Networks: Tricks of the Trade, pages 239-27, 1996.
    • (1996) Neural Networks: Tricks of the Trade , pp. 239-227
    • Simard, P.1    LeCun, Y.2    Denker, J.S.3    Victorri, B.4
  • 22
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Alex J. Smola and Bernd Schölkopf. A tutorial on support vector regression. Statistics and computing, 14(3):199-222, 2004.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 24
    • 33750193383 scopus 로고    scopus 로고
    • Molecular grand-canonical ensemble density functional theory and exploration of chemical space
    • O Anatole Von Lilienfeld and Mark E. Tuckerman. Molecular grand-canonical ensemble density functional theory and exploration of chemical space. The Journal of chemical physics, 125(15): 154104, 2006.
    • (2006) The Journal of Chemical Physics , vol.125 , Issue.15 , pp. 154104
    • Anatole Von Lilienfeld, O.1    Tuckerman, M.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.