-
1
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
[1] Miller, J.S., Stevens, K.R., Yang, M.T., Baker, B.M., Nguyen, D.-H.T., Cohen, D.M., Toro, E., Chen, A.A., Galie, P.A., Yu, X., Chaturvedi, R., Bhatia, S.N., Chen, C.S., Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11 (2012), 768–774, 10.1038/nmat3357.
-
(2012)
Nat. Mater.
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
Stevens, K.R.2
Yang, M.T.3
Baker, B.M.4
Nguyen, D.-H.T.5
Cohen, D.M.6
Toro, E.7
Chen, A.A.8
Galie, P.A.9
Yu, X.10
Chaturvedi, R.11
Bhatia, S.N.12
Chen, C.S.13
-
2
-
-
84877348134
-
Geometric control of vascular networks to enhance engineered tissue integration and function
-
[2] Baranski, J.D., Chaturvedi, R.R., Stevens, K.R., Eyckmans, J., Carvalho, B., Solorzano, R.D., Yang, M.T., Miller, J.S., Bhatia, S.N., Chen, C.S., Geometric control of vascular networks to enhance engineered tissue integration and function. Proc. Natl. Acad. Sci. 110 (2013), 7586–7591, 10.1073/pnas.1217796110.
-
(2013)
Proc. Natl. Acad. Sci.
, vol.110
, pp. 7586-7591
-
-
Baranski, J.D.1
Chaturvedi, R.R.2
Stevens, K.R.3
Eyckmans, J.4
Carvalho, B.5
Solorzano, R.D.6
Yang, M.T.7
Miller, J.S.8
Bhatia, S.N.9
Chen, C.S.10
-
3
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
[3] Kolesky, D.B., Truby, R.L., Gladman, A.S., Busbee, T.A., Homan, K.A., Lewis, J.A., 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater 26 (2014), 3124–3130, 10.1002/adma.201305506.
-
(2014)
Adv. Mater
, vol.26
, pp. 3124-3130
-
-
Kolesky, D.B.1
Truby, R.L.2
Gladman, A.S.3
Busbee, T.A.4
Homan, K.A.5
Lewis, J.A.6
-
4
-
-
0034700503
-
Controlled growth factor release from synthetic extracellular matrices
-
[4] Lee, K.Y., Peters, M.C., Anderson, K.W., Mooney, D.J., Controlled growth factor release from synthetic extracellular matrices. Nature 408 (2000), 998–1000, 10.1038/35050141.
-
(2000)
Nature
, vol.408
, pp. 998-1000
-
-
Lee, K.Y.1
Peters, M.C.2
Anderson, K.W.3
Mooney, D.J.4
-
5
-
-
33846678968
-
Polymers for pro- and anti-angiogenic therapy
-
[5] Fischbach, C., Mooney, D.J., Polymers for pro- and anti-angiogenic therapy. Biomaterials 28 (2007), 2069–2076, 10.1016/j.biomaterials.2006.12.029.
-
(2007)
Biomaterials
, vol.28
, pp. 2069-2076
-
-
Fischbach, C.1
Mooney, D.J.2
-
6
-
-
0034760458
-
Polymeric system for dual growth factor delivery
-
[6] Richardson, T.P., Peters, M.C., Ennett, a B., Mooney, D.J., Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19 (2001), 1029–1034, 10.1038/nbt1101-1029.
-
(2001)
Nat. Biotechnol.
, vol.19
, pp. 1029-1034
-
-
Richardson, T.P.1
Peters, M.C.2
Ennett, A.B.3
Mooney, D.J.4
-
7
-
-
66249124257
-
Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature
-
[7] Chen, X., Aledia, A.S., Ghajar, C.M., Griffith, C.K., Putnam, A.J., Hughes, C.C.W., George, S.C., Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A 15 (2009), 1363–1371, 10.1089/ten.tea.2008.0314.
-
(2009)
Tissue Eng. Part A
, vol.15
, pp. 1363-1371
-
-
Chen, X.1
Aledia, A.S.2
Ghajar, C.M.3
Griffith, C.K.4
Putnam, A.J.5
Hughes, C.C.W.6
George, S.C.7
-
8
-
-
9644289212
-
Approaches to improve angiogenesis in tissue-engineered skin
-
[8] Sahota, P.S., Burn, J.L., Brown, N.J., MacNeil, S., Approaches to improve angiogenesis in tissue-engineered skin. Wound Repair Regen. 12 (2004), 635–642, 10.1111/j.1067-1927.2004.12608.x.
-
(2004)
Wound Repair Regen.
, vol.12
, pp. 635-642
-
-
Sahota, P.S.1
Burn, J.L.2
Brown, N.J.3
MacNeil, S.4
-
9
-
-
24944477341
-
Engineering vascularized skeletal muscle tissue
-
[9] Levenberg, S., Rouwkema, J., Macdonald, M., Garfein, E.S., Kohane, D.S., Darland, D.C., Marini, R., van Blitterswijk, C. a, Mulligan, R.C., D'Amore, P. a, Langer, R., Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23 (2005), 879–884, 10.1038/nbt1109.
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 879-884
-
-
Levenberg, S.1
Rouwkema, J.2
Macdonald, M.3
Garfein, E.S.4
Kohane, D.S.5
Darland, D.C.6
Marini, R.7
van Blitterswijk, C.A.8
Mulligan, R.C.9
D'Amore, P.A.10
Langer, R.11
-
10
-
-
33846818621
-
Tissue engineering of vascularized cardiac muscle from human embryonic stem cells
-
[10] Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Huber, I., Habib, M., Gepstein, L., Levenberg, S., Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100 (2007), 263–272, 10.1161/01.RES.0000257776.05673.ff.
-
(2007)
Circ. Res.
, vol.100
, pp. 263-272
-
-
Caspi, O.1
Lesman, A.2
Basevitch, Y.3
Gepstein, A.4
Arbel, G.5
Huber, I.6
Habib, M.7
Gepstein, L.8
Levenberg, S.9
-
11
-
-
1642321803
-
Tissue engineering: creation of long-lasting blood vessels
-
[11] Koike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J.S., Jain, R.K., Tissue engineering: creation of long-lasting blood vessels. Nature 428 (2004), 138–139, 10.1038/428138a.
-
(2004)
Nature
, vol.428
, pp. 138-139
-
-
Koike, N.1
Fukumura, D.2
Gralla, O.3
Au, P.4
Schechner, J.S.5
Jain, R.K.6
-
12
-
-
84960154893
-
Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis
-
[12] Zhang, B., Montgomery, M., Chamberlain, M.D., Ogawa, S., Korolj, A., Pahnke, A., Wells, L.A., Massé, S., Kim, J., Reis, L., Momen, A., Nunes, S.S., Wheeler, A.R., Nanthakumar, K., Keller, G., Sefton, M.V., Radisic, M., Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater 1 (2016), 1–42, 10.1038/nmat4570.
-
(2016)
Nat. Mater
, vol.1
, pp. 1-42
-
-
Zhang, B.1
Montgomery, M.2
Chamberlain, M.D.3
Ogawa, S.4
Korolj, A.5
Pahnke, A.6
Wells, L.A.7
Massé, S.8
Kim, J.9
Reis, L.10
Momen, A.11
Nunes, S.S.12
Wheeler, A.R.13
Nanthakumar, K.14
Keller, G.15
Sefton, M.V.16
Radisic, M.17
-
13
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
[13] Bertassoni, L.E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A.L., Barabaschi, G., Demarchi, D., Dokmeci, M.R., Yang, Y., Khademhosseini, A., Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab. Chip 14 (2014), 2202–2211, 10.1039/c4lc00030g.
-
(2014)
Lab. Chip
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
Cecconi, M.2
Manoharan, V.3
Nikkhah, M.4
Hjortnaes, J.5
Cristino, A.L.6
Barabaschi, G.7
Demarchi, D.8
Dokmeci, M.R.9
Yang, Y.10
Khademhosseini, A.11
-
14
-
-
84962238220
-
Three-dimensional bioprinting of thick vascularized tissues
-
[14] Kolesky, D.B., Homan, K.A., Skylar-Scott, M.A., Lewis, J.A., Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 3179–3184, 10.1073/pnas.1521342113.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. 3179-3184
-
-
Kolesky, D.B.1
Homan, K.A.2
Skylar-Scott, M.A.3
Lewis, J.A.4
-
15
-
-
84982283785
-
Direct 3D bioprinting of perfusable vascular constructs using a blend bioink
-
[15] Jia, W., Gungor-Ozkerim, P.S., Zhang, Y.S., Yue, K., Zhu, K., Liu, W., Pi, Q., Byambaa, B., Dokmeci, M.R., Shin, S.R., Khademhosseini, A., Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106 (2016), 58–68, 10.1016/j.biomaterials.2016.07.038.
-
(2016)
Biomaterials
, vol.106
, pp. 58-68
-
-
Jia, W.1
Gungor-Ozkerim, P.S.2
Zhang, Y.S.3
Yue, K.4
Zhu, K.5
Liu, W.6
Pi, Q.7
Byambaa, B.8
Dokmeci, M.R.9
Shin, S.R.10
Khademhosseini, A.11
-
16
-
-
84989278478
-
Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
-
[16] Zhang, Y.S., Arneri, A., Bersini, S., Shin, S.R., Zhu, K., Goli-Malekabadi, Z., Aleman, J., Colosi, C., Busignani, F., Dell'Erba, V., Bishop, C., Shupe, T., Demarchi, D., Moretti, M., Rasponi, M., Dokmeci, M.R., Atala, A., Khademhosseini, A., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110 (2016), 45–59, 10.1016/j.biomaterials.2016.09.003.
-
(2016)
Biomaterials
, vol.110
, pp. 45-59
-
-
Zhang, Y.S.1
Arneri, A.2
Bersini, S.3
Shin, S.R.4
Zhu, K.5
Goli-Malekabadi, Z.6
Aleman, J.7
Colosi, C.8
Busignani, F.9
Dell'Erba, V.10
Bishop, C.11
Shupe, T.12
Demarchi, D.13
Moretti, M.14
Rasponi, M.15
Dokmeci, M.R.16
Atala, A.17
Khademhosseini, A.18
-
17
-
-
77954990738
-
Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation
-
[17] Chan, V., Zorlutuna, P., Jeong, J.H., Kong, H., Bashir, R., Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab. Chip, 10, 2010, 2062, 10.1039/c004285d.
-
(2010)
Lab. Chip
, vol.10
, pp. 2062
-
-
Chan, V.1
Zorlutuna, P.2
Jeong, J.H.3
Kong, H.4
Bashir, R.5
-
18
-
-
84864678601
-
Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography
-
[18] Zhang, a P., Qu, X., Soman, P., Hribar, K.C., Lee, J.W., Chen, S., He, S., Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater 24 (2012), 4266–4270, 10.1002/adma.201202024.
-
(2012)
Adv. Mater
, vol.24
, pp. 4266-4270
-
-
Zhang, A.P.1
Qu, X.2
Soman, P.3
Hribar, K.C.4
Lee, J.W.5
Chen, S.6
He, S.7
-
19
-
-
84925264033
-
Continuous liquid interface production of 3D objects
-
[19] Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J.P., Ermoshkin, A., Samulski, E.T., DeSimone, J.M., Continuous liquid interface production of 3D objects. Science (80-. ) 347 (2015), 1349–1352, 10.1126/science.aaa2397.
-
(2015)
Science (80-.)
, vol.347
, pp. 1349-1352
-
-
Tumbleston, J.R.1
Shirvanyants, D.2
Ermoshkin, N.3
Janusziewicz, R.4
Johnson, A.R.5
Kelly, D.6
Chen, K.7
Pinschmidt, R.8
Rolland, J.P.9
Ermoshkin, A.10
Samulski, E.T.11
DeSimone, J.M.12
-
20
-
-
84862909001
-
Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering
-
[20] Suri, S., Han, L.-H., Zhang, W., Singh, A., Chen, S., Schmidt, C.E., Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed. Microdevices 13 (2011), 983–993, 10.1007/s10544-011-9568-9.
-
(2011)
Biomed. Microdevices
, vol.13
, pp. 983-993
-
-
Suri, S.1
Han, L.-H.2
Zhang, W.3
Singh, A.4
Chen, S.5
Schmidt, C.E.6
-
21
-
-
84900000967
-
Bio-inspired detoxification using 3D-printed hydrogel nanocomposites
-
[21] Gou, M., Qu, X., Zhu, W., Xiang, M., Yang, J., Zhang, K., Wei, Y., Chen, S., Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat. Commun., 5, 2014, 3774, 10.1038/ncomms4774.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3774
-
-
Gou, M.1
Qu, X.2
Zhu, W.3
Xiang, M.4
Yang, J.5
Zhang, K.6
Wei, Y.7
Chen, S.8
-
22
-
-
84938750546
-
3D-Printed artificial microfish
-
[22] Zhu, W., Li, J., Leong, Y.J., Rozen, I., Qu, X., Dong, R., Wu, Z., Gao, W., Chung, P.H., Wang, J., Chen, S., 3D-Printed artificial microfish. Adv. Mater 27 (2015), 4411–4417, 10.1002/adma.201501372.
-
(2015)
Adv. Mater
, vol.27
, pp. 4411-4417
-
-
Zhu, W.1
Li, J.2
Leong, Y.J.3
Rozen, I.4
Qu, X.5
Dong, R.6
Wu, Z.7
Gao, W.8
Chung, P.H.9
Wang, J.10
Chen, S.11
-
23
-
-
84959218765
-
Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting
-
[23] Ma, X., Qu, X., Zhu, W., Li, Y.-S., Yuan, S., Zhang, H., Liu, J., Wang, P., Lai, C.S.E., Zanella, F., Feng, G.-S., Sheikh, F., Chien, S., Chen, S., Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl. Acad. Sci. 113 (2016), 2206–2211, 10.1073/pnas.1524510113.
-
(2016)
Proc. Natl. Acad. Sci.
, vol.113
, pp. 2206-2211
-
-
Ma, X.1
Qu, X.2
Zhu, W.3
Li, Y.-S.4
Yuan, S.5
Zhang, H.6
Liu, J.7
Wang, P.8
Lai, C.S.E.9
Zanella, F.10
Feng, G.-S.11
Sheikh, F.12
Chien, S.13
Chen, S.14
-
24
-
-
0037420898
-
Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds
-
[24] Leach, J.B., Bivens, K.A., Patrick, C.W., Schmidt, C.E., Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng. 82 (2003), 578–589, 10.1002/bit.10605.
-
(2003)
Biotechnol. Bioeng.
, vol.82
, pp. 578-589
-
-
Leach, J.B.1
Bivens, K.A.2
Patrick, C.W.3
Schmidt, C.E.4
-
25
-
-
77953025978
-
Cell-laden microengineered gelatin methacrylate hydrogels
-
[25] Nichol, J.W., Koshy, S.T., Bae, H., Hwang, C.M., Yamanlar, S., Khademhosseini, A., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31 (2010), 5536–5544, 10.1016/j.biomaterials.2010.03.064.
-
(2010)
Biomaterials
, vol.31
, pp. 5536-5544
-
-
Nichol, J.W.1
Koshy, S.T.2
Bae, H.3
Hwang, C.M.4
Yamanlar, S.5
Khademhosseini, A.6
-
26
-
-
70349863065
-
Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility
-
[26] Fairbanks, B.D., Schwartz, M.P., Bowman, C.N., Anseth, K.S., Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30 (2009), 6702–6707, 10.1016/j.biomaterials.2009.08.055.
-
(2009)
Biomaterials
, vol.30
, pp. 6702-6707
-
-
Fairbanks, B.D.1
Schwartz, M.P.2
Bowman, C.N.3
Anseth, K.S.4
-
27
-
-
84862520770
-
Fiji: an open-source platform for biological-image analysis
-
[27] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (2012), 676–682, 10.1038/nmeth.2019.
-
(2012)
Nat. Methods
, vol.9
, pp. 676-682
-
-
Schindelin, J.1
Arganda-Carreras, I.2
Frise, E.3
Kaynig, V.4
Longair, M.5
Pietzsch, T.6
Preibisch, S.7
Rueden, C.8
Saalfeld, S.9
Schmid, B.10
Tinevez, J.-Y.11
White, D.J.12
Hartenstein, V.13
Eliceiri, K.14
Tomancak, P.15
Cardona, A.16
-
28
-
-
79953067209
-
Hyaluronic acid hydrogels for biomedical applications
-
[28] Burdick, J.A., Prestwich, G.D., Hyaluronic acid hydrogels for biomedical applications. Adv. Mater 23 (2011), H41–H56, 10.1002/adma.201003963.
-
(2011)
Adv. Mater
, vol.23
, pp. H41-H56
-
-
Burdick, J.A.1
Prestwich, G.D.2
-
29
-
-
14044274128
-
Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks
-
[29] Burdick, J. a, Chung, C., Jia, X., Randolph, M. a, Langer, R., Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6 (2005), 386–391, 10.1021/bm049508a.
-
(2005)
Biomacromolecules
, vol.6
, pp. 386-391
-
-
Burdick, J.A.1
Chung, C.2
Jia, X.3
Randolph, M.A.4
Langer, R.5
-
30
-
-
0037420898
-
Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds
-
[30] Baier Leach, J., Bivens, K. a, Patrick, C.W., Schmidt, C.E., Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng. 82 (2003), 578–589, 10.1002/bit.10605.
-
(2003)
Biotechnol. Bioeng.
, vol.82
, pp. 578-589
-
-
Baier Leach, J.1
Bivens, K.A.2
Patrick, C.W.3
Schmidt, C.E.4
-
31
-
-
84906237651
-
Digital plasmonic patterning for localized tuning of hydrogel stiffness
-
[311] Hribar, K.C., Choi, Y.S., Ondeck, M., Engler, A.J., Chen, S., Digital plasmonic patterning for localized tuning of hydrogel stiffness. Adv. Funct. Mater 24 (2014), 4922–4926, 10.1002/adfm.201400274.
-
(2014)
Adv. Funct. Mater
, vol.24
, pp. 4922-4926
-
-
Hribar, K.C.1
Choi, Y.S.2
Ondeck, M.3
Engler, A.J.4
Chen, S.5
-
32
-
-
84864313385
-
The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices
-
[32] Choi, Y.S., Vincent, L.G., Lee, A.R., Kretchmer, K.C., Chirasatitsin, S., Dobke, M.K., Engler, A.J., The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials 33 (2012), 6943–6951, 10.1016/j.biomaterials.2012.06.057.
-
(2012)
Biomaterials
, vol.33
, pp. 6943-6951
-
-
Choi, Y.S.1
Vincent, L.G.2
Lee, A.R.3
Kretchmer, K.C.4
Chirasatitsin, S.5
Dobke, M.K.6
Engler, A.J.7
-
33
-
-
84875808914
-
Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength
-
[33] Vincent, L.G., Choi, Y.S., Alonso-Latorre, B., del Álamo, J.C., Engler, A.J., Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8 (2013), 472–484, 10.1002/biot.201200205.
-
(2013)
Biotechnol. J.
, vol.8
, pp. 472-484
-
-
Vincent, L.G.1
Choi, Y.S.2
Alonso-Latorre, B.3
del Álamo, J.C.4
Engler, A.J.5
-
34
-
-
70349599885
-
Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength
-
[34] Isenberg, B.C., DiMilla, P.A., Walker, M., Kim, S., Wong, J.Y., Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys. J. 97 (2009), 1313–1322, 10.1016/j.bpj.2009.06.021.
-
(2009)
Biophys. J.
, vol.97
, pp. 1313-1322
-
-
Isenberg, B.C.1
DiMilla, P.A.2
Walker, M.3
Kim, S.4
Wong, J.Y.5
-
35
-
-
84905725612
-
3D bioprinting of tissues and organs
-
[35] Murphy, S.V., Atala, A., 3D bioprinting of tissues and organs. Nat. Biotechnol. 32 (2014), 773–785, 10.1038/nbt.2958.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
36
-
-
38349103640
-
Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing
-
[36] Chang, R., Nam, J., Sun, W., Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A 14 (2008), 41–48, 10.1089/ten.a.2007.0004.
-
(2008)
Tissue Eng. Part A
, vol.14
, pp. 41-48
-
-
Chang, R.1
Nam, J.2
Sun, W.3
-
37
-
-
33847076827
-
Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool
-
[37] Smith, C.M., Christian, J.J., Warren, W.L., Williams, S.K., Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng. 13 (2007), 373–383, 10.1089/ten.2007.13.ft-338.
-
(2007)
Tissue Eng.
, vol.13
, pp. 373-383
-
-
Smith, C.M.1
Christian, J.J.2
Warren, W.L.3
Williams, S.K.4
-
38
-
-
84859083757
-
Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers
-
[38] Aguado, B.A., Mulyasasmita, W., Su, J., Lampe, K.J., Heilshorn, S.C., Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18 (2012), 806–815, 10.1089/ten.tea.2011.0391.
-
(2012)
Tissue Eng. Part A
, vol.18
, pp. 806-815
-
-
Aguado, B.A.1
Mulyasasmita, W.2
Su, J.3
Lampe, K.J.4
Heilshorn, S.C.5
-
39
-
-
0034788813
-
Intravital lectin perfusion analysis of vascular permeability in human micro- and macro- blood vessels
-
[39] Debbage, P.L., Sölder, E., Seidl, S., Hutzler, P., Hugl, B., Öfner, D., Kreczy, A., Intravital lectin perfusion analysis of vascular permeability in human micro- and macro- blood vessels. Histochem. Cell Biol. 116 (2001), 349–359, 10.1007/s004180100328.
-
(2001)
Histochem. Cell Biol.
, vol.116
, pp. 349-359
-
-
Debbage, P.L.1
Sölder, E.2
Seidl, S.3
Hutzler, P.4
Hugl, B.5
Öfner, D.6
Kreczy, A.7
-
40
-
-
0031924714
-
Lectin intravital perfusion studies in tumor-bearing mice: micrometer-resolution, wide-area mapping of microvascular labeling, distinguishing efficiently and inefficiently perfused microregions in the tumor
-
[40] Debbage, P.L., Griebel, J., Ried, M., Gneiting, T., DeVries, A., Hutzler, P., Lectin intravital perfusion studies in tumor-bearing mice: micrometer-resolution, wide-area mapping of microvascular labeling, distinguishing efficiently and inefficiently perfused microregions in the tumor. J. Histochem. Cytochem 46 (1998), 627–639, 10.1177/002215549804600508.
-
(1998)
J. Histochem. Cytochem
, vol.46
, pp. 627-639
-
-
Debbage, P.L.1
Griebel, J.2
Ried, M.3
Gneiting, T.4
DeVries, A.5
Hutzler, P.6
-
41
-
-
47049097487
-
Vascularization in tissue engineering
-
[41] Rouwkema, J., Rivron, N.C., van Blitterswijk, C.A., Vascularization in tissue engineering. Trends Biotechnol. 26 (2008), 434–441, 10.1016/j.tibtech.2008.04.009.
-
(2008)
Trends Biotechnol.
, vol.26
, pp. 434-441
-
-
Rouwkema, J.1
Rivron, N.C.2
van Blitterswijk, C.A.3
-
42
-
-
79957713859
-
Vascularization is the key challenge in tissue engineering
-
[42] Novosel, E.C., Kleinhans, C., Kluger, P.J., Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63 (2011), 300–311, 10.1016/j.addr.2011.03.004.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 300-311
-
-
Novosel, E.C.1
Kleinhans, C.2
Kluger, P.J.3
|