-
1
-
-
84869460713
-
Building vascular networks
-
Bae H, Puranik AS, Gauvin R, Edalat F, Carrillo-Conde B, Peppas NA, Khademhosseini A. 2012 Building vascular networks. Sci. Transl. Med. 4, 23. (doi:10.1126/scitranslmed.3003688)
-
(2012)
Sci. Transl. Med.
, vol.4
, pp. 23
-
-
Bae, H.1
Puranik, A.S.2
Gauvin, R.3
Edalat, F.4
Carrillo-Conde, B.5
Peppas, N.A.6
Khademhosseini, A.7
-
2
-
-
69949152311
-
Vascularization strategies for tissue engineering
-
Lovett M, Lee K, Edwards A, Kaplan DL. 2009 Vascularization strategies for tissue engineering. Tissue Eng. 15, 353-370. (doi:10.1089/ten.teb. 2009.0085)
-
(2009)
Tissue Eng.
, vol.15
, pp. 353-370
-
-
Lovett, M.1
Lee, K.2
Edwards, A.3
Kaplan, D.L.4
-
3
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
Bertassoni LE et al. 2014 Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab. Chip 14, 2202-2211. (doi:10.1039/C4LC00030G)
-
(2014)
Lab. Chip
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
-
4
-
-
84862197029
-
In vitro microvessels for the study of angiogenesis and thrombosis
-
Zheng Y et al. 2012 In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109, 9342-9347. (doi:10.1073/pnas.1201240109)
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 9342-9347
-
-
Zheng, Y.1
-
5
-
-
35748941950
-
Microfluidic scaffolds for tissue engineering
-
Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. 2007 Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908-915. (doi:10.1038/ nmat2022)
-
(2007)
Nat. Mater.
, vol.6
, pp. 908-915
-
-
Choi, N.W.1
Cabodi, M.2
Held, B.3
Gleghorn, J.P.4
Bonassar, L.J.5
Stroock, A.D.6
-
6
-
-
84883342307
-
Formation of microvascular networks in vitro
-
Morgan JP et al. 2013 Formation of microvascular networks in vitro. Nat. Protoc. 8, 1820-1836. (doi:10.1038/nprot.2013.110)
-
(2013)
Nat. Protoc.
, vol.8
, pp. 1820-1836
-
-
Morgan, J.P.1
-
7
-
-
77953577325
-
Multilayer microfluidic PEGDA hydrogels
-
Cuchiara MP, Allen AC, Chen TM, Miller JS, West JL. 2010 Multilayer microfluidic PEGDA hydrogels. Biomaterials 31, 5491-5497. (doi:10.1016/j. biomaterials.2010.03.031)
-
(2010)
Biomaterials
, vol.31
, pp. 5491-5497
-
-
Cuchiara, M.P.1
Allen, A.C.2
Chen, T.M.3
Miller, J.S.4
West, J.L.5
-
8
-
-
34249794264
-
A cell-laden microfluidic hydrogel
-
Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A. 2007 A cell-laden microfluidic hydrogel. Lab. Chip 7, 756-762. (doi:10.1039/b615486g)
-
(2007)
Lab. Chip
, vol.7
, pp. 756-762
-
-
Ling, Y.1
Rubin, J.2
Deng, Y.3
Huang, C.4
Demirci, U.5
Karp, J.M.6
Khademhosseini, A.7
-
9
-
-
34249806021
-
Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
-
Golden AP, Tien J. 2007 Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab. Chip 7, 720-725. (doi:10.1039/ b618409j)
-
(2007)
Lab. Chip
, vol.7
, pp. 720-725
-
-
Golden, A.P.1
Tien, J.2
-
10
-
-
33646943472
-
Formation of perfused, functional microvascular tubes in vitro
-
Chrobak KM, Potter DR, Tien J. 2006 Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71, 185-196. (doi:10.1016/j.mvr. 2006.02.005)
-
(2006)
Microvasc. Res.
, vol.71
, pp. 185-196
-
-
Chrobak, K.M.1
Potter, D.R.2
Tien, J.3
-
11
-
-
77953837789
-
Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold
-
Hoganson DM, Pryor HI, Spool ID, Burns OH, Gilmore JR, Vacanti JP. 2010 Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold. Tissue Eng. 16, 1469-1477. (doi:10.1089/ten.tea.2009.0118)
-
(2010)
Tissue Eng.
, vol.16
, pp. 1469-1477
-
-
Hoganson, D.M.1
Pryor, H.I.2
Spool, I.D.3
Burns, O.H.4
Gilmore, J.R.5
Vacanti, J.P.6
-
12
-
-
84903758320
-
Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template
-
Wang XY, Jin ZH, Gan BW, Lv SW, Xie M, Huang WH. 2014 Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab. Chip 14, 2709-2716. (doi:10.1039/c4lc00069b)
-
(2014)
Lab. Chip
, vol.14
, pp. 2709-2716
-
-
Wang, X.Y.1
Jin, Z.H.2
Gan, B.W.3
Lv, S.W.4
Xie, M.5
Huang, W.H.6
-
13
-
-
84971343448
-
3D-printed fluidic networks as vasculature for engineered tissue
-
Kinstlinger IS, Miller JS. 2016 3D-printed fluidic networks as vasculature for engineered tissue. Lab. Chip 16, 2025-2043. (doi:10.1039/ C6LC00193A)
-
(2016)
Lab. Chip
, vol.16
, pp. 2025-2043
-
-
Kinstlinger, I.S.1
Miller, J.S.2
-
14
-
-
0032404328
-
Development of biocompatible synthetic extracellular matrices for tissue engineering
-
Kim BS, Mooney DJ. 1998 Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 16, 224-230. (doi:10.1016/S0167-7799(98)01191-3)
-
(1998)
Trends Biotechnol.
, vol.16
, pp. 224-230
-
-
Kim, B.S.1
Mooney, D.J.2
-
15
-
-
14844315100
-
Fugitive inks for direct-write assembly of threedimensional microvascular networks
-
Therriault D, Shepherd RF, White SR, Lewis JA. 2005 Fugitive inks for direct-write assembly of threedimensional microvascular networks. Adv. Mater. 17, 395-399. (doi:10.1002/adma.200400481)
-
(2005)
Adv. Mater.
, vol.17
, pp. 395-399
-
-
Therriault, D.1
Shepherd, R.F.2
White, S.R.3
Lewis, J.A.4
-
16
-
-
84924984183
-
3D printed molds for non-planar PDMS microfluidic channels
-
Hwang Y, Paydar OH, Candler RN. 2015 3D printed molds for non-planar PDMS microfluidic channels. Sens Actuators A 226, 137-142. (doi:10.1016/j.sna. 2015.02.028)
-
(2015)
Sens Actuators A
, vol.226
, pp. 137-142
-
-
Hwang, Y.1
Paydar, O.H.2
Candler, R.N.3
-
17
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered threedimensional tissues
-
Miller JS et al. 2012 Rapid casting of patterned vascular networks for perfusable engineered threedimensional tissues. Nat. Mater. 11, 768-774. (doi:10.1038/nmat3357)
-
(2012)
Nat. Mater.
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
-
18
-
-
84962238220
-
Three-dimensional bioprinting of thick vascularized tissues
-
Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. 2016 Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179-3184. (doi:10.1073/pnas.1521342113)
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 3179-3184
-
-
Kolesky, D.B.1
Homan, K.A.2
Skylar-Scott, M.A.3
Lewis, J.A.4
-
19
-
-
84960905071
-
A 3D bioprinting system to produce humanscale tissue constructs with structural integrity
-
Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. 2016 A 3D bioprinting system to produce humanscale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312-319. (doi:10.1038/nbt.3413)
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 312-319
-
-
Kang, H.W.1
Lee, S.J.2
Ko, I.K.3
Kengla, C.4
Yoo, J.J.5
Atala, A.6
-
20
-
-
79959731599
-
Omnidirectional printing of 3D microvascular networks
-
Wu W, DeConinck A, Lewis JA. 2011 Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23, H178-H183. (doi:10.1002/adma.201004625)
-
(2011)
Adv. Mater.
, vol.23
, pp. H178-H183
-
-
Wu, W.1
DeConinck, A.2
Lewis, J.A.3
-
21
-
-
84855714763
-
Microdrop printing of hydrogel bioinks into 3D tissue-like geometries
-
Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J. 2012 Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv. Mater. 24, 391-396. (doi:10.1002/adma.201102800)
-
(2012)
Adv. Mater.
, vol.24
, pp. 391-396
-
-
Pataky, K.1
Braschler, T.2
Negro, A.3
Renaud, P.4
Lutolf, M.P.5
Brugger, J.6
-
22
-
-
0037376632
-
Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication
-
Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka J. 2003 Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24, 1487-1497. (doi:10. 1016/S0142-9612(02)00528-8)
-
(2003)
Biomaterials
, vol.24
, pp. 1487-1497
-
-
Sachlos, E.1
Reis, N.2
Ainsley, C.3
Derby, B.4
Czernuszka, J.5
-
23
-
-
42649083003
-
Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering
-
Liu C, Xia Z, Han Z, Hulley P, Triffitt J, Czernuszka J. 2008 Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 85, 519-528. (doi:10.1002/jbm.b.30975)
-
(2008)
J. Biomed. Mater. Res. Part B Appl. Biomater.
, vol.85
, pp. 519-528
-
-
Liu, C.1
Xia, Z.2
Han, Z.3
Hulley, P.4
Triffitt, J.5
Czernuszka, J.6
-
24
-
-
84971325685
-
Construction of large-volume tissue mimics with 3D functional vascular networks
-
Kang TY, Hong JM, Jung JW, Kang HW, Cho DW. 2016 Construction of large-volume tissue mimics with 3D functional vascular networks. PLoS ONE 11, e0156529. (doi:10.1371/journal.pone.0156529)
-
(2016)
PLoS ONE
, vol.11
, pp. e0156529
-
-
Kang, T.Y.1
Hong, J.M.2
Jung, J.W.3
Kang, H.W.4
Cho, D.W.5
-
25
-
-
85011095713
-
Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices
-
Saggiomo V, Velders AH. 2015 Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv Sci. 2, 1500125. (doi:10.1002/advs.201500125)
-
(2015)
Adv Sci.
, vol.2
, pp. 1500125
-
-
Saggiomo, V.1
Velders, A.H.2
-
26
-
-
84976482194
-
Replicating 3D printed structures into hydrogels
-
Chan HN, Shu Y, Tian Q, Chen Y, Chen Y, Wu H. 2016 Replicating 3D printed structures into hydrogels. Mater. Horiz. 3, 309-313. (doi:10.1039/ C6MH00058D)
-
(2016)
Mater. Horiz.
, vol.3
, pp. 309-313
-
-
Chan, H.N.1
Shu, Y.2
Tian, Q.3
Chen, Y.4
Chen, Y.5
Wu, H.6
-
27
-
-
84879206448
-
Collagen-vs gelatinebased biomaterials and their biocompatibility: Review and perspectives
-
Gorgieva S, Kokol V. 2011 Collagen-vs. gelatinebased biomaterials and their biocompatibility: review and perspectives. Biomater. Appl. Nanomed. 2011, 17-53.
-
(2011)
Biomater. Appl. Nanomed.
, vol.2011
, pp. 17-53
-
-
Gorgieva, S.1
Kokol, V.2
-
28
-
-
45249084145
-
Fibrin: A versatile scaffold for tissue engineering applications
-
Ahmed TA, Dare EV, Hincke M. 2008 Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 14, 199-215. (doi:10.1089/ ten.teb.2007.0435)
-
(2008)
Tissue Eng. Part B Rev.
, vol.14
, pp. 199-215
-
-
Ahmed, T.A.1
Dare, E.V.2
Hincke, M.3
-
29
-
-
0019401702
-
On connecting large vessels to small the meaning of Murray's law
-
Sherman TF. 1981 On connecting large vessels to small. The meaning of Murray's law. J. Gen. Physiol. 78, 431-453. (doi:10.1085/jgp. 78.4.431)
-
(1981)
J. Gen. Physiol.
, vol.78
, pp. 431-453
-
-
Sherman, T.F.1
-
30
-
-
36148989570
-
Using Murray's law to design artificial vascular microfluidic networks
-
Barber R, Cie K, Emerson D. 2006 Using Murray's law to design artificial vascular microfluidic networks. WIT Trans. Ecol. Envir. 87, 245-254. (doi:10.2495/dn060241)
-
(2006)
WIT Trans. Ecol. Envir.
, vol.87
, pp. 245-254
-
-
Barber, R.1
Cie, K.2
Emerson, D.3
|