메뉴 건너뛰기




Volumn 13, Issue 125, 2016, Pages

Multi-casting approach for vascular networks in cellularized hydrogels

Author keywords

Hydrogel; Three dimensional printing; Vascular networks; Vascularization

Indexed keywords

3D PRINTERS; BIOCHEMISTRY; BIOMATERIALS; CELLS; COMPLEX NETWORKS; COMPUTER AIDED DESIGN; CYTOLOGY; ENDOTHELIAL CELLS; HISTOLOGY; TISSUE; TISSUE ENGINEERING;

EID: 85011585810     PISSN: 17425689     EISSN: 17425662     Source Type: Journal    
DOI: 10.1098/rsif.2016.0768     Document Type: Article
Times cited : (25)

References (32)
  • 2
    • 69949152311 scopus 로고    scopus 로고
    • Vascularization strategies for tissue engineering
    • Lovett M, Lee K, Edwards A, Kaplan DL. 2009 Vascularization strategies for tissue engineering. Tissue Eng. 15, 353-370. (doi:10.1089/ten.teb. 2009.0085)
    • (2009) Tissue Eng. , vol.15 , pp. 353-370
    • Lovett, M.1    Lee, K.2    Edwards, A.3    Kaplan, D.L.4
  • 3
    • 84901915693 scopus 로고    scopus 로고
    • Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
    • Bertassoni LE et al. 2014 Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab. Chip 14, 2202-2211. (doi:10.1039/C4LC00030G)
    • (2014) Lab. Chip , vol.14 , pp. 2202-2211
    • Bertassoni, L.E.1
  • 4
    • 84862197029 scopus 로고    scopus 로고
    • In vitro microvessels for the study of angiogenesis and thrombosis
    • Zheng Y et al. 2012 In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109, 9342-9347. (doi:10.1073/pnas.1201240109)
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 9342-9347
    • Zheng, Y.1
  • 6
    • 84883342307 scopus 로고    scopus 로고
    • Formation of microvascular networks in vitro
    • Morgan JP et al. 2013 Formation of microvascular networks in vitro. Nat. Protoc. 8, 1820-1836. (doi:10.1038/nprot.2013.110)
    • (2013) Nat. Protoc. , vol.8 , pp. 1820-1836
    • Morgan, J.P.1
  • 9
    • 34249806021 scopus 로고    scopus 로고
    • Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
    • Golden AP, Tien J. 2007 Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab. Chip 7, 720-725. (doi:10.1039/ b618409j)
    • (2007) Lab. Chip , vol.7 , pp. 720-725
    • Golden, A.P.1    Tien, J.2
  • 10
    • 33646943472 scopus 로고    scopus 로고
    • Formation of perfused, functional microvascular tubes in vitro
    • Chrobak KM, Potter DR, Tien J. 2006 Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71, 185-196. (doi:10.1016/j.mvr. 2006.02.005)
    • (2006) Microvasc. Res. , vol.71 , pp. 185-196
    • Chrobak, K.M.1    Potter, D.R.2    Tien, J.3
  • 11
    • 77953837789 scopus 로고    scopus 로고
    • Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold
    • Hoganson DM, Pryor HI, Spool ID, Burns OH, Gilmore JR, Vacanti JP. 2010 Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold. Tissue Eng. 16, 1469-1477. (doi:10.1089/ten.tea.2009.0118)
    • (2010) Tissue Eng. , vol.16 , pp. 1469-1477
    • Hoganson, D.M.1    Pryor, H.I.2    Spool, I.D.3    Burns, O.H.4    Gilmore, J.R.5    Vacanti, J.P.6
  • 12
    • 84903758320 scopus 로고    scopus 로고
    • Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template
    • Wang XY, Jin ZH, Gan BW, Lv SW, Xie M, Huang WH. 2014 Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab. Chip 14, 2709-2716. (doi:10.1039/c4lc00069b)
    • (2014) Lab. Chip , vol.14 , pp. 2709-2716
    • Wang, X.Y.1    Jin, Z.H.2    Gan, B.W.3    Lv, S.W.4    Xie, M.5    Huang, W.H.6
  • 13
    • 84971343448 scopus 로고    scopus 로고
    • 3D-printed fluidic networks as vasculature for engineered tissue
    • Kinstlinger IS, Miller JS. 2016 3D-printed fluidic networks as vasculature for engineered tissue. Lab. Chip 16, 2025-2043. (doi:10.1039/ C6LC00193A)
    • (2016) Lab. Chip , vol.16 , pp. 2025-2043
    • Kinstlinger, I.S.1    Miller, J.S.2
  • 14
    • 0032404328 scopus 로고    scopus 로고
    • Development of biocompatible synthetic extracellular matrices for tissue engineering
    • Kim BS, Mooney DJ. 1998 Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 16, 224-230. (doi:10.1016/S0167-7799(98)01191-3)
    • (1998) Trends Biotechnol. , vol.16 , pp. 224-230
    • Kim, B.S.1    Mooney, D.J.2
  • 15
    • 14844315100 scopus 로고    scopus 로고
    • Fugitive inks for direct-write assembly of threedimensional microvascular networks
    • Therriault D, Shepherd RF, White SR, Lewis JA. 2005 Fugitive inks for direct-write assembly of threedimensional microvascular networks. Adv. Mater. 17, 395-399. (doi:10.1002/adma.200400481)
    • (2005) Adv. Mater. , vol.17 , pp. 395-399
    • Therriault, D.1    Shepherd, R.F.2    White, S.R.3    Lewis, J.A.4
  • 16
    • 84924984183 scopus 로고    scopus 로고
    • 3D printed molds for non-planar PDMS microfluidic channels
    • Hwang Y, Paydar OH, Candler RN. 2015 3D printed molds for non-planar PDMS microfluidic channels. Sens Actuators A 226, 137-142. (doi:10.1016/j.sna. 2015.02.028)
    • (2015) Sens Actuators A , vol.226 , pp. 137-142
    • Hwang, Y.1    Paydar, O.H.2    Candler, R.N.3
  • 17
    • 84866355664 scopus 로고    scopus 로고
    • Rapid casting of patterned vascular networks for perfusable engineered threedimensional tissues
    • Miller JS et al. 2012 Rapid casting of patterned vascular networks for perfusable engineered threedimensional tissues. Nat. Mater. 11, 768-774. (doi:10.1038/nmat3357)
    • (2012) Nat. Mater. , vol.11 , pp. 768-774
    • Miller, J.S.1
  • 19
    • 84960905071 scopus 로고    scopus 로고
    • A 3D bioprinting system to produce humanscale tissue constructs with structural integrity
    • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. 2016 A 3D bioprinting system to produce humanscale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312-319. (doi:10.1038/nbt.3413)
    • (2016) Nat. Biotechnol. , vol.34 , pp. 312-319
    • Kang, H.W.1    Lee, S.J.2    Ko, I.K.3    Kengla, C.4    Yoo, J.J.5    Atala, A.6
  • 20
    • 79959731599 scopus 로고    scopus 로고
    • Omnidirectional printing of 3D microvascular networks
    • Wu W, DeConinck A, Lewis JA. 2011 Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23, H178-H183. (doi:10.1002/adma.201004625)
    • (2011) Adv. Mater. , vol.23 , pp. H178-H183
    • Wu, W.1    DeConinck, A.2    Lewis, J.A.3
  • 21
    • 84855714763 scopus 로고    scopus 로고
    • Microdrop printing of hydrogel bioinks into 3D tissue-like geometries
    • Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J. 2012 Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv. Mater. 24, 391-396. (doi:10.1002/adma.201102800)
    • (2012) Adv. Mater. , vol.24 , pp. 391-396
    • Pataky, K.1    Braschler, T.2    Negro, A.3    Renaud, P.4    Lutolf, M.P.5    Brugger, J.6
  • 22
    • 0037376632 scopus 로고    scopus 로고
    • Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication
    • Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka J. 2003 Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24, 1487-1497. (doi:10. 1016/S0142-9612(02)00528-8)
    • (2003) Biomaterials , vol.24 , pp. 1487-1497
    • Sachlos, E.1    Reis, N.2    Ainsley, C.3    Derby, B.4    Czernuszka, J.5
  • 24
    • 84971325685 scopus 로고    scopus 로고
    • Construction of large-volume tissue mimics with 3D functional vascular networks
    • Kang TY, Hong JM, Jung JW, Kang HW, Cho DW. 2016 Construction of large-volume tissue mimics with 3D functional vascular networks. PLoS ONE 11, e0156529. (doi:10.1371/journal.pone.0156529)
    • (2016) PLoS ONE , vol.11 , pp. e0156529
    • Kang, T.Y.1    Hong, J.M.2    Jung, J.W.3    Kang, H.W.4    Cho, D.W.5
  • 25
    • 85011095713 scopus 로고    scopus 로고
    • Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices
    • Saggiomo V, Velders AH. 2015 Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv Sci. 2, 1500125. (doi:10.1002/advs.201500125)
    • (2015) Adv Sci. , vol.2 , pp. 1500125
    • Saggiomo, V.1    Velders, A.H.2
  • 26
    • 84976482194 scopus 로고    scopus 로고
    • Replicating 3D printed structures into hydrogels
    • Chan HN, Shu Y, Tian Q, Chen Y, Chen Y, Wu H. 2016 Replicating 3D printed structures into hydrogels. Mater. Horiz. 3, 309-313. (doi:10.1039/ C6MH00058D)
    • (2016) Mater. Horiz. , vol.3 , pp. 309-313
    • Chan, H.N.1    Shu, Y.2    Tian, Q.3    Chen, Y.4    Chen, Y.5    Wu, H.6
  • 27
    • 84879206448 scopus 로고    scopus 로고
    • Collagen-vs gelatinebased biomaterials and their biocompatibility: Review and perspectives
    • Gorgieva S, Kokol V. 2011 Collagen-vs. gelatinebased biomaterials and their biocompatibility: review and perspectives. Biomater. Appl. Nanomed. 2011, 17-53.
    • (2011) Biomater. Appl. Nanomed. , vol.2011 , pp. 17-53
    • Gorgieva, S.1    Kokol, V.2
  • 28
    • 45249084145 scopus 로고    scopus 로고
    • Fibrin: A versatile scaffold for tissue engineering applications
    • Ahmed TA, Dare EV, Hincke M. 2008 Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 14, 199-215. (doi:10.1089/ ten.teb.2007.0435)
    • (2008) Tissue Eng. Part B Rev. , vol.14 , pp. 199-215
    • Ahmed, T.A.1    Dare, E.V.2    Hincke, M.3
  • 29
    • 0019401702 scopus 로고
    • On connecting large vessels to small the meaning of Murray's law
    • Sherman TF. 1981 On connecting large vessels to small. The meaning of Murray's law. J. Gen. Physiol. 78, 431-453. (doi:10.1085/jgp. 78.4.431)
    • (1981) J. Gen. Physiol. , vol.78 , pp. 431-453
    • Sherman, T.F.1
  • 30
    • 36148989570 scopus 로고    scopus 로고
    • Using Murray's law to design artificial vascular microfluidic networks
    • Barber R, Cie K, Emerson D. 2006 Using Murray's law to design artificial vascular microfluidic networks. WIT Trans. Ecol. Envir. 87, 245-254. (doi:10.2495/dn060241)
    • (2006) WIT Trans. Ecol. Envir. , vol.87 , pp. 245-254
    • Barber, R.1    Cie, K.2    Emerson, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.