메뉴 건너뛰기




Volumn 16, Issue 1, 2017, Pages 11-15

Alzheimer’s disease detection by pseudo zernike moment and linear regression classification

Author keywords

Alzheimer s disease; Linear regression classification; Pseudo Zernike moment

Indexed keywords

ALGORITHM; ALZHEIMER DISEASE; ARTICLE; COMPUTER AIDED DESIGN; COMPUTER SIMULATION; FUNCTIONAL NEUROIMAGING; LINEAR REGRESSION CLASSIFICATION; MACHINE LEARNING; MAMMOGRAPHY; MEASUREMENT ACCURACY; NUCLEAR MAGNETIC RESONANCE IMAGING; PRINCIPAL COMPONENT ANALYSIS; PRINCIPAL COORDINATE ANALYSIS; PSEUDO ZERNIKE MOMENT; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; VOXEL BASED MORPHOMETRY; AGED; BRAIN; DIAGNOSTIC IMAGING; FEMALE; HUMAN; MALE; MIDDLE AGED; NEUROIMAGING; REPRODUCIBILITY; STATISTICAL MODEL; THREE DIMENSIONAL IMAGING; VERY ELDERLY;

EID: 85011068537     PISSN: 18715273     EISSN: 19963181     Source Type: Journal    
DOI: 10.2174/1871527315666161111123024     Document Type: Article
Times cited : (51)

References (38)
  • 1
    • 84892614873 scopus 로고    scopus 로고
    • Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree
    • Dong Z. Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog Electromagnet Res 2014; 144: 171-84.
    • (2014) Prog Electromagnet Res , vol.144 , pp. 171-184
    • Dong, Z.1
  • 2
    • 84896115285 scopus 로고    scopus 로고
    • A Functional Imaging Study of Self-Regulatory Capacities in Persons Who Stutter
    • Liu J, Wang Z, Huo Y, et al. A Functional Imaging Study of Self-Regulatory Capacities in Persons Who Stutter. Plos One 2014; 9(2): Article ID: e89891.
    • (2014) Plos One , vol.9 , Issue.2
    • Liu, J.1    Wang, Z.2    Huo, Y.3
  • 3
    • 84941279289 scopus 로고    scopus 로고
    • Multi-atlas learner fusion: An efficient segmentation approach for large-scale data
    • Asman AJ, Huo Y, Plassard AJ, Landman BA. Multi-atlas learner fusion: An efficient segmentation approach for large-scale data. Med Image Anal 2015; 26(1): 82-91.
    • (2015) Med Image Anal , vol.26 , Issue.1 , pp. 82-91
    • Asman, A.J.1    Huo, Y.2    Plassard, A.J.3    Landman, B.A.4
  • 4
    • 75249106883 scopus 로고    scopus 로고
    • Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease
    • Plant C, Teipel SJ, Oswald A, et al. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage 2010; 50(1): 162-74.
    • (2010) Neuroimage , vol.50 , Issue.1 , pp. 162-174
    • Plant, C.1    Teipel, S.J.2    Oswald, A.3
  • 5
    • 84930681763 scopus 로고    scopus 로고
    • Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning
    • Yuan TF. Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Computl Neurosci 2015; 9: Article ID: 66.
    • (2015) Front Computl Neurosci , vol.9
    • Yuan, T.F.1
  • 6
    • 84872022060 scopus 로고    scopus 로고
    • Deformation based feature selection for Computer Aided Diagnosis of Alzheimer’s Disease
    • Savio A, Grana M. Deformation based feature selection for Computer Aided Diagnosis of Alzheimer’s Disease. Expert Sys Appl 2013; 40(5): 1619-28.
    • (2013) Expert Sys Appl , vol.40 , Issue.5 , pp. 1619-1628
    • Savio, A.1    Grana, M.2
  • 7
    • 84944903522 scopus 로고    scopus 로고
    • Detection of Alzheimer’s disease by displacement field and machine learning
    • Zhang Y. Detection of Alzheimer’s disease by displacement field and machine learning. Peer J 2015; 3: Article ID: e1251.
    • (2015) Peer J , vol.3
    • Zhang, Y.1
  • 8
    • 84868215748 scopus 로고    scopus 로고
    • Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease
    • Gray KR, Aljabar P, Heckemann RA, et al. Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. Neuroimage 2013; 65: 167-75.
    • (2013) Neuroimage , vol.65 , pp. 167-175
    • Gray, K.R.1    Aljabar, P.2    Heckemann, R.A.3
  • 9
    • 84954184199 scopus 로고    scopus 로고
    • Detection of Alzheimer’s Disease by Three-Dimensional Displacement Field Estimation in Structural Magnetic Resonance Imaging
    • Wang S, Zhang Y, Liu G, Phillips P, Yuan TF. Detection of Alzheimer’s Disease by Three-Dimensional Displacement Field Estimation in Structural Magnetic Resonance Imaging. J Alzheimer’s Dis 2016; 50(1): 233-48.
    • (2016) J Alzheimer’s Dis , vol.50 , Issue.1 , pp. 233-248
    • Wang, S.1    Zhang, Y.2    Liu, G.3    Phillips, P.4    Yuan, T.F.5
  • 10
    • 84941284847 scopus 로고    scopus 로고
    • A novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRI
    • Gorji HT, Haddadnia J. A novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRI. Neuroscience 2015; 305: 361-71.
    • (2015) Neuroscience , vol.305 , pp. 361-371
    • Gorji, H.T.1    Haddadnia, J.2
  • 12
    • 84886256698 scopus 로고    scopus 로고
    • Sexual Dimorphism in the Human Corpus Callosum: An MRI Study Using the OASIS Brain Database
    • Ardekani BA, Figarsky K, Sidtis JJ. Sexual Dimorphism in the Human Corpus Callosum: An MRI Study Using the OASIS Brain Database. Cereb Cortex 2013; 23(10): 2514-20.
    • (2013) Cereb Cortex , vol.23 , Issue.10 , pp. 2514-2520
    • Ardekani, B.A.1    Figarsky, K.2    Sidtis, J.J.3
  • 13
    • 79960628077 scopus 로고    scopus 로고
    • Classification of benign and malignant masses based on Zernike moments
    • Tahmasbi A, Saki F, Shokouhi SB. Classification of benign and malignant masses based on Zernike moments. Comput Biol Med 2011; 41(8): 726-35.
    • (2011) Comput Biol Med , vol.41 , Issue.8 , pp. 726-735
    • Tahmasbi, A.1    Saki, F.2    Shokouhi, S.B.3
  • 14
    • 84930077387 scopus 로고    scopus 로고
    • Near infrared face recognition using Zernike moments and Hermite kernels
    • Sajad Farokhi, Usman Ullah Sheikh, Jan Flusser, Bo Yang. Near infrared face recognition using Zernike moments and Hermite kernels. Info Sci 2015; 316: 234-45.
    • (2015) Info Sci , vol.316 , pp. 234-245
    • Farokhi, S.1    Sheikh, U.U.2    Flusser, J.3    Bo, Y.4
  • 15
    • 84922001193 scopus 로고    scopus 로고
    • Computer-Aided Diagnosis of Malignant Mammograms using Zernike Moments and SVM
    • Sharma S, Khanna P. Computer-Aided Diagnosis of Malignant Mammograms using Zernike Moments and SVM. J Digit Imag 2015; 28(1): 77-90.
    • (2015) J Digit Imag , vol.28 , Issue.1 , pp. 77-90
    • Sharma, S.1    Khanna, P.2
  • 16
    • 85011064028 scopus 로고    scopus 로고
    • Stable, fast computation of high- order Zernike moments using a recursive method
    • Deng A-W, Wei C-H, Gwo C-Y. Stable, fast computation of high- order Zernike moments using a recursive method. Pattern Recognition 2016; 56: 16-25.
    • (2016) Pattern Recognition , vol.56 , pp. 16-25
    • Deng, A.-W.1    Wei, C.-H.2    Gwo, C.-Y.3
  • 17
    • 84960110086 scopus 로고    scopus 로고
    • Image Forgery Detection Algorithm Based on Non Sampling Wavelet Transform and Zernike Moments
    • Xiao JK. Image Forgery Detection Algorithm Based on Non Sampling Wavelet Transform and Zernike Moments. Int J Security Appl 2016; 10(2): 27-38.
    • (2016) Int J Security Appl , vol.10 , Issue.2 , pp. 27-38
    • Xiao, J.K.1
  • 18
    • 84977074180 scopus 로고    scopus 로고
    • Zernike Moments-Based Gurumukhi Character Recognition
    • Aggarwal A, Singh C. Zernike Moments-Based Gurumukhi Character Recognition. Appl Artificial Intell 2016; 30(5): 429-44.
    • (2016) Appl Artificial Intell , vol.30 , Issue.5 , pp. 429-444
    • Aggarwal, A.1    Singh, C.2
  • 19
    • 84954040953 scopus 로고    scopus 로고
    • A comparative performance analysis of DCT-based and Zernike moments-based image up-sampling techniques
    • Singh C, Aggarwal A. A comparative performance analysis of DCT-based and Zernike moments-based image up-sampling techniques. Optik 2016; 127(4): 2158-64.
    • (2016) Optik , vol.127 , Issue.4 , pp. 2158-2164
    • Singh, C.1    Aggarwal, A.2
  • 20
    • 84947967877 scopus 로고    scopus 로고
    • Phase Analysis of Three-Dimensional Zernike Moment for Building Classification and Orientation in Digital Surface Model
    • Yan Y, Zhang Y, Tian S, Gao F. Phase Analysis of Three-Dimensional Zernike Moment for Building Classification and Orientation in Digital Surface Model. IEEE Geosci Remote Sens Lett 2016; 13(1): 58-62.
    • (2016) IEEE Geosci Remote Sens Lett , vol.13 , Issue.1 , pp. 58-62
    • Yan, Y.1    Zhang, Y.2    Tian, S.3    Gao, F.4
  • 23
    • 84912143699 scopus 로고    scopus 로고
    • Pseudo-Zernike moment invariants to blur degradation and similarity transformation
    • Dai X, Liu T, Shu H, Luo L. Pseudo-Zernike moment invariants to blur degradation and similarity transformation. Int J Comput Math 2014; 91(11): 2403-14.
    • (2014) Int J Comput Math , vol.91 , Issue.11 , pp. 2403-2414
    • Dai, X.1    Liu, T.2    Shu, H.3    Luo, L.4
  • 24
    • 84963949110 scopus 로고    scopus 로고
    • Object Contour Detecting Using Pseudo Zernike Moment and Multi-Layer Perceptron
    • Tehran, Iran: IEEE
    • Borzue N, Faez K. Object Contour Detecting Using Pseudo Zernike Moment and Multi-Layer Perceptron. In: 22nd Iranian Conference on Biomedical Engineering. Tehran, Iran: IEEE: 2015. pp. 304-308.
    • (2015) 22Nd Iranian Conference on Biomedical Engineering , pp. 304-308
    • Borzue, N.1    Faez, K.2
  • 26
    • 84899046508 scopus 로고    scopus 로고
    • Local Weighted Pseudo Zernike Moments and Fuzzy classification for facial expression Recognition
    • Qazvin, Iran: IEEE
    • Ahmady M, Ghasemi R, Kanan HR. Local Weighted Pseudo Zernike Moments and Fuzzy classification for facial expression Recognition. In: 13th Iranian Conference on Fuzzy Systems. Qazvin, Iran: IEEE: 2013. Pp 156-161.
    • (2013) 13Th Iranian Conference on Fuzzy Systems , pp. 156-161
    • Ahmady, M.1    Ghasemi, R.2    Kanan, H.R.3
  • 27
    • 84883711303 scopus 로고    scopus 로고
    • Vision-based force measurement using pseudo-zernike moment invariants
    • Hu W, Liu H, Hu C, Wang S, Chen D, Mo J, Liang Q. Vision-based force measurement using pseudo-zernike moment invariants. Measurement 2013; 46(10): 4293-05.
    • (2013) Measurement , vol.46 , Issue.10 , pp. 4293-4305
    • Hu, W.1    Liu, H.2    Hu, C.3    Wang, S.4    Chen, D.5    Mo, J.6    Liang, Q.7
  • 28
    • 84861165586 scopus 로고    scopus 로고
    • Rotary Face Recognition Based on Pseudo-Zernike Moment
    • E. Mao, L.L. Xu, and W. Tian, Eds, Berlin: Springer-Verlag Berlin
    • Shi Z, Liu G, Du M. Rotary Face Recognition Based on Pseudo-Zernike Moment. In: E. Mao, L.L. Xu, and W. Tian, Eds, Emerging Computation and Information Technologies for Education, Berlin: Springer-Verlag Berlin: 2012. Pp 641-646.
    • (2012) Emerging Computation and Information Technologies for Education , pp. 641-646
    • Shi, Z.1    Liu, G.2    Du, M.3
  • 29
    • 84863936573 scopus 로고    scopus 로고
    • Accurate pseudo Zernike moment invariants for greylevel images
    • Hosny KM. Accurate pseudo Zernike moment invariants for greylevel images. Imag Sci J 2012; 60(4): pp 234-42.
    • (2012) Imag Sci J , vol.60 , Issue.4 , pp. 234-242
    • Hosny, K.M.1
  • 30
    • 84928376423 scopus 로고    scopus 로고
    • UGC-JU face database and its benchmarking using linear regression classifier
    • Seal A, Bhattacharjee D, Nasipuri M, Basu DK. UGC-JU face database and its benchmarking using linear regression classifier. Multimedia Tool Appl 2015; 74(9): 2913-37.
    • (2015) Multimedia Tool Appl , vol.74 , Issue.9 , pp. 2913-2937
    • Seal, A.1    Bhattacharjee, D.2    Nasipuri, M.3    Basu, D.K.4
  • 31
    • 84947614191 scopus 로고    scopus 로고
    • Least-Squares Estimation of Multifractional Random Fields in a Hilbert-Valued Context
    • Ruiz-Medina MD, Anh VV, Espejo RM, Angulo JM, Frías MP. Least-Squares Estimation of Multifractional Random Fields in a Hilbert-Valued Context. J Optim Theory Appl 2015; 167(3): 888-11.
    • (2015) J Optim Theory Appl , vol.167 , Issue.3 , pp. 888-911
    • Ruiz-Medina, M.D.1    Anh, V.V.2    Espejo, R.M.3    Angulo, J.M.4    Frías, M.P.5
  • 32
    • 84938955086 scopus 로고    scopus 로고
    • Least squares estimation of unknown molecular properties and quantum QSPR fundamental equation
    • Carbo-Dorca R. Least squares estimation of unknown molecular properties and quantum QSPR fundamental equation. J Math Chem 2015; 53(8): 1651-56.
    • (2015) J Math Chem , vol.53 , Issue.8 , pp. 1651-1656
    • Carbo-Dorca, R.1
  • 33
    • 84922885359 scopus 로고    scopus 로고
    • Double linear regression classification for face recognition
    • Feng Q, Zhu Q, Tang L-L, et al. Double linear regression classification for face recognition. J Mod Opt 2015; 62(4): 288-95.
    • (2015) J Mod Opt , vol.62 , Issue.4 , pp. 288-295
    • Feng, Q.1    Zhu, Q.2    Tang, L.-L.3
  • 34
    • 84954238804 scopus 로고    scopus 로고
    • Identity recognition based on generalised linear regression classification for multi-component images
    • Chou YT, Yang JF. Identity recognition based on generalised linear regression classification for multi-component images. IET Comput Vis 2016; 10(1): 18-27.
    • (2016) IET Comput Vis , vol.10 , Issue.1 , pp. 18-27
    • Chou, Y.T.1    Yang, J.F.2
  • 35
    • 84891295297 scopus 로고    scopus 로고
    • RGB-D image-based detection of stairs, pedestrian crosswalks and traffic signs
    • Wang S, Pan H, Zhang C, et al. RGB-D image-based detection of stairs, pedestrian crosswalks and traffic signs. J Visual Commun Image Represent 2014; 25(2): 263-72.
    • (2014) J Visual Commun Image Represent , vol.25 , Issue.2 , pp. 263-272
    • Wang, S.1    Pan, H.2    Zhang, C.3
  • 36
    • 84988719691 scopus 로고    scopus 로고
    • Combination of stationary wavelet transform and kernel support vector machines for pathological brain detection
    • Zhou X-X, Yang J-F, Sheng H, et al. Combination of stationary wavelet transform and kernel support vector machines for pathological brain detection. Simulation 2016; 92(9): 827-37.
    • (2016) Simulation , vol.92 , Issue.9 , pp. 827-837
    • Zhou, X.-X.1    Yang, J.-F.2    Sheng, H.3
  • 37
    • 84978512532 scopus 로고    scopus 로고
    • Fitness-scaling adaptive genetic algorithm with local search for solving the Multiple Depot Vehicle Routing Problem
    • Wei L, Yang J. Fitness-scaling adaptive genetic algorithm with local search for solving the Multiple Depot Vehicle Routing Problem. Simulation 2016; 92(7): 601-16.
    • (2016) Simulation , vol.92 , Issue.7 , pp. 601-616
    • Wei, L.1    Yang, J.2
  • 38
    • 84978537466 scopus 로고    scopus 로고
    • Multi-objective path finding in stochastic networks using a biogeography-based optimization method
    • Du S. Multi-objective path finding in stochastic networks using a biogeography-based optimization method. Simulation 2016; 92(7): 637-47.
    • (2016) Simulation , vol.92 , Issue.7 , pp. 637-647
    • Du, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.