메뉴 건너뛰기




Volumn 26, Issue 1, 2015, Pages 82-91

Multi-atlas learner fusion: An efficient segmentation approach for large-scale data

Author keywords

AdaBoost; Machine learning; Multi atlas learner fusion; Multi atlas segmentation

Indexed keywords

ABILITY TESTING; ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; BRAIN MAPPING; LEARNING SYSTEMS; STATISTICAL TESTS;

EID: 84941279289     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2015.08.010     Document Type: Article
Times cited : (37)

References (65)
  • 1
    • 64949185299 scopus 로고    scopus 로고
    • Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
    • Aljabar P., Heckemann R.A., Hammers A., Hajnal J.V., Rueckert D. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 2009, 46:726-738.
    • (2009) NeuroImage , vol.46 , pp. 726-738
    • Aljabar, P.1    Heckemann, R.A.2    Hammers, A.3    Hajnal, J.V.4    Rueckert, D.5
  • 2
    • 53049099569 scopus 로고    scopus 로고
    • Automated morphological analysis of magnetic resonance brain imaging using spectral analysis
    • Aljabar P., Rueckert D., Crum W.R. Automated morphological analysis of magnetic resonance brain imaging using spectral analysis. NeuroImage 2008, 43:225-235.
    • (2008) NeuroImage , vol.43 , pp. 225-235
    • Aljabar, P.1    Rueckert, D.2    Crum, W.R.3
  • 5
    • 84863432619 scopus 로고    scopus 로고
    • Formulating spatially varying performance in the statistical fusion framework
    • Asman A.J., Landman B.A. Formulating spatially varying performance in the statistical fusion framework. IEEE Transac. Med. Imag. 2012, 31:1326-1336.
    • (2012) IEEE Transac. Med. Imag. , vol.31 , pp. 1326-1336
    • Asman, A.J.1    Landman, B.A.2
  • 6
    • 84883291089 scopus 로고    scopus 로고
    • Non-local statistical label fusion for multi-atlas segmentation
    • Asman A.J., Landman B.A. Non-local statistical label fusion for multi-atlas segmentation. Med Image Anal. 2013, 17:194-208.
    • (2013) Med Image Anal. , vol.17 , pp. 194-208
    • Asman, A.J.1    Landman, B.A.2
  • 7
    • 38849187993 scopus 로고    scopus 로고
    • Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
    • Avants B.B., Epstein C.L., Grossman M., Gee J.C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 2008, 12:26-41.
    • (2008) Med. Image Anal. , vol.12 , pp. 26-41
    • Avants, B.B.1    Epstein, C.L.2    Grossman, M.3    Gee, J.C.4
  • 8
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15:1373-1396.
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 10
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifier (with discussion and a rejoinder by the author)
    • Breiman L. Arcing classifier (with discussion and a rejoinder by the author). Ann. Stat. 1998, 26:801-849.
    • (1998) Ann. Stat. , vol.26 , pp. 801-849
    • Breiman, L.1
  • 13
    • 0142260969 scopus 로고    scopus 로고
    • A fully automatic and robust brain MRI tissue classification method
    • Cocosco C.A., Zijdenbos A.P., Evans A.C. A fully automatic and robust brain MRI tissue classification method. Med. Image Anal. 2003, 7:513-527.
    • (2003) Med. Image Anal. , vol.7 , pp. 513-527
    • Cocosco, C.A.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 14
    • 78649673803 scopus 로고    scopus 로고
    • Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
    • Coupé P., Manjón J.V., Fonov V., Pruessner J., Robles M., Collins D.L. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 2011, 54:940-954.
    • (2011) NeuroImage , vol.54 , pp. 940-954
    • Coupé, P.1    Manjón, J.V.2    Fonov, V.3    Pruessner, J.4    Robles, M.5    Collins, D.L.6
  • 18
    • 0000250265 scopus 로고
    • Measures of the amount of ecologic association between species
    • Dice L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26:297-302.
    • (1945) Ecology , vol.26 , pp. 297-302
    • Dice, L.R.1
  • 20
    • 84983110889 scopus 로고
    • A desicion-theoretic generalization of on-line learning and an application to boosting
    • Springer
    • Freund Y., Schapire R.E. A desicion-theoretic generalization of on-line learning and an application to boosting. Computational Learning Theory 1995, 23-37. Springer.
    • (1995) Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 21
    • 84875147798 scopus 로고    scopus 로고
    • Semi-supervised segmentation using multiple segmentation hypotheses from a single atlas, medical computer vision
    • Springer
    • Gass T., Székely G., Goksel O. Semi-supervised segmentation using multiple segmentation hypotheses from a single atlas, medical computer vision. Recognition Techniques and Applications in Medical Imaging 2013, 29-37. Springer.
    • (2013) Recognition Techniques and Applications in Medical Imaging , pp. 29-37
    • Gass, T.1    Székely, G.2    Goksel, O.3
  • 24
    • 84886735631 scopus 로고    scopus 로고
    • Learning-boosted label fusion for multi-atlas auto-segmentation
    • Springer
    • Han X. Learning-boosted label fusion for multi-atlas auto-segmentation. Machine Learning in Medical Imaging 2013, 17-24. Springer.
    • (2013) Machine Learning in Medical Imaging , pp. 17-24
    • Han, X.1
  • 25
    • 84899112101 scopus 로고    scopus 로고
    • Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation
    • Hao Y., Wang T., Zhang X., Duan Y., Yu C., Jiang T., Fan Y. Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation. Hum. Brain Mapp. 2014, 35:2674-2697.
    • (2014) Hum. Brain Mapp. , vol.35 , pp. 2674-2697
    • Hao, Y.1    Wang, T.2    Zhang, X.3    Duan, Y.4    Yu, C.5    Jiang, T.6    Fan, Y.7
  • 27
    • 33748784605 scopus 로고    scopus 로고
    • Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
    • Heckemann R.A., Hajnal J.V., Aljabar P., Rueckert D., Hammers A. Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 2006, 33:115-126.
    • (2006) NeuroImage , vol.33 , pp. 115-126
    • Heckemann, R.A.1    Hajnal, J.V.2    Aljabar, P.3    Rueckert, D.4    Hammers, A.5
  • 28
    • 67649512401 scopus 로고    scopus 로고
    • Multi-atlas-based segmentation with local decision fusion-application to cardiac and aortic segmentation in CT scans
    • Isgum I., Staring M., Rutten A., Prokop M., Viergever M.A., van Ginneken B. Multi-atlas-based segmentation with local decision fusion-application to cardiac and aortic segmentation in CT scans. IEEE Transac. Med. Imag. 2009, 28:1000-1010.
    • (2009) IEEE Transac. Med. Imag. , vol.28 , pp. 1000-1010
    • Isgum, I.1    Staring, M.2    Rutten, A.3    Prokop, M.4    Viergever, M.A.5    van Ginneken, B.6
  • 29
    • 80054102992 scopus 로고    scopus 로고
    • Iterative multi-atlas-based multi-image segmentation with tree-based registration
    • Jia H., Yap P.T., Shen D. Iterative multi-atlas-based multi-image segmentation with tree-based registration. NeuroImage 2012, 59:422-430.
    • (2012) NeuroImage , vol.59 , pp. 422-430
    • Jia, H.1    Yap, P.T.2    Shen, D.3
  • 30
    • 0030748719 scopus 로고    scopus 로고
    • A prospective study of estrogen replacement therapy and the risk of developing Alzheimer's disease: the Baltimore Longitudinal Study of Aging
    • Kawas C., Resnick S., Morrison A., Brookmeyer R., Corrada M., Zonderman A., Bacal C., Lingle D.D., Metter E. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer's disease: the Baltimore Longitudinal Study of Aging. Neurology 1997, 48:1517-1521.
    • (1997) Neurology , vol.48 , pp. 1517-1521
    • Kawas, C.1    Resnick, S.2    Morrison, A.3    Brookmeyer, R.4    Corrada, M.5    Zonderman, A.6    Bacal, C.7    Lingle, D.D.8    Metter, E.9
  • 37
    • 0033005627 scopus 로고    scopus 로고
    • Measurement of brain structures with artificial neural networks: two- and three-dimensional applications
    • Magnotta V.A., Heckel D., Andreasen N.C., Cizadlo T., Corson P.W., Ehrhardt J.C., Yuh W.T. Measurement of brain structures with artificial neural networks: two- and three-dimensional applications. Radiology 1999, 211:781-790.
    • (1999) Radiology , vol.211 , pp. 781-790
    • Magnotta, V.A.1    Heckel, D.2    Andreasen, N.C.3    Cizadlo, T.4    Corson, P.W.5    Ehrhardt, J.C.6    Yuh, W.T.7
  • 38
    • 34548409688 scopus 로고    scopus 로고
    • Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
    • Marcus D.S., Wang T.H., Parker J., Csernansky J.G., Morris J.C., Buckner R.L. Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 2007, 19:1498-1507.
    • (2007) J. Cogn. Neurosci. , vol.19 , pp. 1498-1507
    • Marcus, D.S.1    Wang, T.H.2    Parker, J.3    Csernansky, J.G.4    Morris, J.C.5    Buckner, R.L.6
  • 39
    • 73849088741 scopus 로고    scopus 로고
    • Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation
    • Morra J.H., Tu Z., Apostolova L.G., Green A.E., Toga A.W., Thompson P.M. Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation. IEEE Transac. Med. Imag. 2010, 29:30-43.
    • (2010) IEEE Transac. Med. Imag. , vol.29 , pp. 30-43
    • Morra, J.H.1    Tu, Z.2    Apostolova, L.G.3    Green, A.E.4    Toga, A.W.5    Thompson, P.M.6
  • 41
    • 0000325341 scopus 로고
    • LIII. On lines and planes of closest fit to systems of points in space
    • Pearson K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dub. Philos. Mag. J. Sci. 1901, 2:559-572.
    • (1901) Lond. Edinb. Dub. Philos. Mag. J. Sci. , vol.2 , pp. 559-572
    • Pearson, K.1
  • 42
    • 36048967893 scopus 로고    scopus 로고
    • Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures
    • Powell S., Magnotta V.A., Johnson H., Jammalamadaka V.K., Pierson R., Andreasen N.C. Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures. NeuroImage 2008, 39:238-247.
    • (2008) NeuroImage , vol.39 , pp. 238-247
    • Powell, S.1    Magnotta, V.A.2    Johnson, H.3    Jammalamadaka, V.K.4    Pierson, R.5    Andreasen, N.C.6
  • 43
    • 84941305368 scopus 로고
    • C4. 5: Programs for Machine Learning.
    • Quinlan, J.R., 1993. C4. 5: Programs for Machine Learning.
    • (1993)
    • Quinlan, J.R.1
  • 44
    • 1842452933 scopus 로고    scopus 로고
    • Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
    • Rohlfing T., Brandt R., Menzel R., Maurer C.R. Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 2004, 21:1428-1442.
    • (2004) NeuroImage , vol.21 , pp. 1428-1442
    • Rohlfing, T.1    Brandt, R.2    Menzel, R.3    Maurer, C.R.4
  • 45
    • 4043153403 scopus 로고    scopus 로고
    • Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation
    • Rohlfing T., Russakoff D.B., Maurer C.R. Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. IEEE Transac. Med. Imag. 2004, 23:983-994.
    • (2004) IEEE Transac. Med. Imag. , vol.23 , pp. 983-994
    • Rohlfing, T.1    Russakoff, D.B.2    Maurer, C.R.3
  • 46
    • 80053519532 scopus 로고    scopus 로고
    • A supervised patch-based approach for human brain labeling
    • Rousseau F., Habas P.A., Studholme C. A supervised patch-based approach for human brain labeling. IEEE Transac. Med. Imag. 2011, 30:1852-1862.
    • (2011) IEEE Transac. Med. Imag. , vol.30 , pp. 1852-1862
    • Rousseau, F.1    Habas, P.A.2    Studholme, C.3
  • 47
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323.
    • (2000) Science , vol.290 , pp. 2323
    • Roweis, S.T.1    Saul, L.K.2
  • 49
    • 84890950827 scopus 로고    scopus 로고
    • Common genetic influences on negative emotionality and a general psychopathology factor in childhood and adolescence
    • Tackett J.L., Lahey B.B., van Hulle C., Waldman I., Krueger R.F., Rathouz P.J. Common genetic influences on negative emotionality and a general psychopathology factor in childhood and adolescence. J. Abnorm. Psychol. 2013, 122:1142-1153.
    • (2013) J. Abnorm. Psychol. , vol.122 , pp. 1142-1153
    • Tackett, J.L.1    Lahey, B.B.2    van Hulle, C.3    Waldman, I.4    Krueger, R.F.5    Rathouz, P.J.6
  • 50
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319.
    • (2000) Science , vol.290 , pp. 2319
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 54
    • 79952071986 scopus 로고    scopus 로고
    • A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation
    • Wang H., Das S.R., Suh J.W., Altinay M., Pluta J., Craige C., Avants B., Yushkevich P.A. A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation. NeuroImage 2011, 55:968-985.
    • (2011) NeuroImage , vol.55 , pp. 968-985
    • Wang, H.1    Das, S.R.2    Suh, J.W.3    Altinay, M.4    Pluta, J.5    Craige, C.6    Avants, B.7    Yushkevich, P.A.8
  • 57
    • 1942438249 scopus 로고    scopus 로고
    • Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
    • Warfield S.K., Zou K.H., Wells W.M. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transac. Med. Imag. 2004, 23:903-921.
    • (2004) IEEE Transac. Med. Imag. , vol.23 , pp. 903-921
    • Warfield, S.K.1    Zou, K.H.2    Wells, W.M.3
  • 60
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F. Individual comparisons by ranking methods. Biomet. Bull. 1945, 1(6):80-83.
    • (1945) Biomet. Bull. , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 64
    • 84926277285 scopus 로고    scopus 로고
    • Encoding atlases by randomized classification forests for efficient multi-atlas label propagation
    • Zikic D., Glocker B., Criminisi A. Encoding atlases by randomized classification forests for efficient multi-atlas label propagation. Med. Image Anal. 2014, 18:1262-1273.
    • (2014) Med. Image Anal. , vol.18 , pp. 1262-1273
    • Zikic, D.1    Glocker, B.2    Criminisi, A.3
  • 65
    • 0043237770 scopus 로고    scopus 로고
    • Image registration methods: a survey
    • Zitova B., Flusser J. Image registration methods: a survey. Image Vis. Comput 2003, 21:977-1000.
    • (2003) Image Vis. Comput , vol.21 , pp. 977-1000
    • Zitova, B.1    Flusser, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.