메뉴 건너뛰기




Volumn 16, Issue 1, 2017, Pages 36-43

The differential diagnosis of multiple sclerosis using convex combination of infinite kernels

Author keywords

Clinical decision support; Infinite kernel classification; Multiple sclerosis; Patient diagnostic

Indexed keywords

ADULT; ARTIFICIAL NEURAL NETWORK; ATROPHY; CLINICAL DECISION SUPPORT SYSTEM; CONTROLLED STUDY; DECISION SUPPORT SYSTEM; DIFFERENTIAL DIAGNOSIS; ELECTRON SPIN RESONANCE; EXPANDED DISABILITY STATUS SCALE; FEMALE; HUMAN; KERNEL METHOD; LUMBAR PUNCTURE; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; MATHEMATICAL PARAMETERS; MIDDLE AGED; MULTIPLE SCLEROSIS; NORMAL HUMAN; NUCLEAR MAGNETIC RESONANCE IMAGING; REVIEW; SUPPORT VECTOR MACHINE; ALGORITHM; BIOLOGICAL MODEL; COMPLICATION; DIAGNOSTIC IMAGING; DISABILITY; NONLINEAR SYSTEM; YOUNG ADULT;

EID: 85011016175     PISSN: 18715273     EISSN: 19963181     Source Type: Journal    
DOI: 10.2174/1871527315666161024142439     Document Type: Review
Times cited : (16)

References (30)
  • 3
    • 85011018087 scopus 로고    scopus 로고
    • Neuropsychiatry and behavioural neuroscience
    • Bodani M, Kopelman, MD. Neuropsychiatry and behavioural neuroscience. Brain 2004; 127(4): 944-46.
    • (2004) Brain , vol.127 , Issue.4 , pp. 944-946
    • Bodani, M.1    Kopelman, M.D.2
  • 4
    • 84988883316 scopus 로고    scopus 로고
    • A Pathological Brain Detection System Based on Radial Basis Function Neural Network
    • Zhang YD. A Pathological Brain Detection System Based on Radial Basis Function Neural Network. In: J Med Imag Health Inform 2016; 6: 1218-22.
    • In: J Med Imag Health Inform 2016 , vol.6 , pp. 1218-1222
    • Zhang, Y.D.1
  • 5
    • 84988736270 scopus 로고    scopus 로고
    • Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: Decision tree, knearest neighbors, and support vector machine
    • Yang, M. Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, knearest neighbors, and support vector machine. Simulation 2016; 92(9): 861-71.
    • (2016) Simulation , vol.92 , Issue.9 , pp. 861-871
    • Yang, M.1
  • 6
    • 0030454495 scopus 로고    scopus 로고
    • A comparison of neural network and bayes recognition approaches in the evaluation of the brainstem trigeminal evoked potentials in multiple sclerosis
    • Gutermana H, Nehmadi Y, Chistyakov A, Soustiel JF, Feinsod M. A comparison of neural network and bayes recognition approaches in the evaluation of the brainstem trigeminal evoked potentials in multiple sclerosis. Int J Bio-Med Comput 1996; 43(3): 203-13.
    • (1996) Int J Bio-Med Comput , vol.43 , Issue.3 , pp. 203-213
    • Gutermana, H.1    Nehmadi, Y.2    Chistyakov, A.3    Soustiel, J.F.4    Feinsod, M.5
  • 7
    • 77958473334 scopus 로고    scopus 로고
    • A multilayer perceptron neural network-based approach for the identification of responsiveness to interferon therapy in multiple sclerosis patients
    • Calcagno G, Staiano A, Fortunato G, et al. A multilayer perceptron neural network-based approach for the identification of responsiveness to interferon therapy in multiple sclerosis patients. Inform Sci 2010; 180(21): 4153-63.
    • (2010) Inform Sci , vol.180 , Issue.21 , pp. 4153-4163
    • Calcagno, G.1    Staiano, A.2    Fortunato, G.3
  • 9
    • 0028417375 scopus 로고
    • Neural network approach in multichannel auditory event-related potential analysis
    • Wu FY, Slater JD, Ramsay R. Neural network approach in multichannel auditory event-related potential analysis. Int J Bio-Med Comput 1994; 35(3): 157-68.
    • (1994) Int J Bio-Med Comput , vol.35 , Issue.3 , pp. 157-168
    • Wu, F.Y.1    Slater, J.D.2    Ramsay, R.3
  • 10
    • 33644555266 scopus 로고    scopus 로고
    • Some principles of the development of a clinical database/national register of selected inflammatory rheumatic diseases in the Czech Republic
    • Dostal C, Pavelka K, Zvrov J, Hanzlcek P, Olejrov M. Some principles of the development of a clinical database/national register of selected inflammatory rheumatic diseases in the Czech Republic. Int J Med Inform 2006; 75(304): 216-23.
    • (2006) Int J Med Inform , vol.75 , Issue.304 , pp. 216-223
    • Dostal, C.1    Pavelka, K.2    Zvrov, J.3    Hanzlcek, P.4    Olejrov, M.5
  • 11
    • 84864428870 scopus 로고    scopus 로고
    • The feasibility of collecting information from people with multiple sclerosis for the uk ms register via a web portal: Characterizing a cohort of people with ms
    • Ford DV, Jones KH, Middleton RM, et al. The feasibility of collecting information from people with multiple sclerosis for the uk ms register via a web portal: characterizing a cohort of people with ms. BMC Med Inf Decision Making 2012; 12: 73.
    • (2012) BMC Med Inf Decision Making , vol.12 , pp. 73
    • Ford, D.V.1    Jones, K.H.2    Middleton, R.M.3
  • 12
    • 84856803646 scopus 로고    scopus 로고
    • Internet portal use in an academic multiple sclerosis center
    • Nielsen AS, Halamka JD, Kinkel RP. Internet portal use in an academic multiple sclerosis center. JAMIA 2012; 19(1): 128-33.
    • (2012) JAMIA , vol.19 , Issue.1 , pp. 128-133
    • Nielsen, A.S.1    Halamka, J.D.2    Kinkel, R.P.3
  • 13
    • 84860006661 scopus 로고    scopus 로고
    • An evolutionary-fuzzy fDSSg for assessing health status in multiple sclerosis disease
    • Esposito M, Falco ID, Pietro GD. An evolutionary-fuzzy fDSSg for assessing health status in multiple sclerosis disease. Int J Med Inform 2011; 80(12): e245-e254.
    • (2011) Int J Med Inform , vol.80 , Issue.12 , pp. e245-e254
    • Esposito, M.1    Falco, I.D.2    Pietro, G.D.3
  • 14
    • 28544436950 scopus 로고    scopus 로고
    • Diagnostic criteria for multiple sclerosis: 2005 revisions to the”McDonald Criteria”
    • Polman CH, Reingold SC, Edan G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the”McDonald Criteria”. Annal Neurol 2005; 58(6): 840-46.
    • (2005) Annal Neurol , vol.58 , Issue.6 , pp. 840-846
    • Polman, C.H.1    Reingold, S.C.2    Edan, G.3
  • 15
    • 77952790748 scopus 로고    scopus 로고
    • The mcdonald criteria for multiple sclerosis: Time for clarification
    • Hawkes CH, Giovannoni G. The mcdonald criteria for multiple sclerosis: time for clarification. Multi Scler J 2010; 16(5): 566-75.
    • (2010) Multi Scler J , vol.16 , Issue.5 , pp. 566-575
    • Hawkes, C.H.1    Giovannoni, G.2
  • 16
    • 79952501096 scopus 로고    scopus 로고
    • Diagnostic criteria for multiple sclerosis: 2010 revisions to the mcdonald criteria
    • Polman, CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the mcdonald criteria. Annal Neurol 2011; 69: 292302.
    • (2011) Annal Neurol , vol.69
    • Polman, C.H.1    Reingold, S.C.2    Banwell, B.3
  • 18
    • 85011018100 scopus 로고    scopus 로고
    • Accessed: 2012-08-04
    • Expanded disability status scale-edss. Available at: http://en.wikipedia.org\wiki\Expandeddisabilitystatusscale\. [Accessed: 2012-08-04]
    • Expanded Disability Status Scale-Edss
  • 20
    • 0027657329 scopus 로고
    • Semi-infinite programming: Theory, methods, and applications
    • Hettich R, Kortanek KO. Semi-infinite programming: Theory, methods, and applications. SIAM Rev 1993; 35(3): 380-29.
    • (1993) SIAM Rev , vol.35 , Issue.3 , pp. 380-429
    • Hettich, R.1    Kortanek, K.O.2
  • 21
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O, Vapnik V, Bousquet O, Mukherjee S. Choosing multiple parameters for support vector machines. Mach Learn 2002; 46(1-3): 131-59.
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 23
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
    • Wu KP, Wang SD. Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recogn 2009; 42(5): 710-17.
    • (2009) Pattern Recogn , vol.42 , Issue.5 , pp. 710-717
    • Wu, K.P.1    Wang, S.D.2
  • 25
    • 77955580870 scopus 로고    scopus 로고
    • Infinite kernel learning via infinite and semi-infinite programming
    • Ozogur AS, Weber GW. Infinite kernel learning via infinite and semi-infinite programming. Optim Method Softw 2010; 25(6): 937-70.
    • (2010) Optim Method Softw , vol.25 , Issue.6 , pp. 937-970
    • Ozogur, A.S.1    Weber, G.W.2
  • 27
    • 84962667208 scopus 로고    scopus 로고
    • Detection of abnormal MR brains based on wavelet entropy and feature selection
    • Zhou XX. Detection of abnormal MR brains based on wavelet entropy and feature selection. IEEE T Electrical Electron Eng 2016; 11(3): 364-73.
    • (2016) IEEE T Electrical Electron Eng , vol.11 , Issue.3 , pp. 364-373
    • Zhou, X.X.1
  • 28
    • 84976314220 scopus 로고    scopus 로고
    • A multilayer perceptron based smart pathological brain detection system by fractional Fourier entropy
    • Zhou XX. A multilayer perceptron based smart pathological brain detection system by fractional Fourier entropy. J Med Sys 2016; 40(7): 173.
    • (2016) J Med Sys , vol.40 , Issue.7 , pp. 173
    • Zhou, X.X.1
  • 29
    • 84929610466 scopus 로고    scopus 로고
    • Feed-forward Neural Network Optimized by Hybridization of PSO and ABC for Abnormal Brain Detection
    • Du SD. Feed-forward Neural Network Optimized by Hybridization of PSO and ABC for Abnormal Brain Detection. Int Imag Sys Technol 2015; 25(2): 153-64.
    • (2015) Int Imag Sys Technol , vol.25 , Issue.2 , pp. 153-164
    • Du, S.D.1
  • 30
    • 84940487338 scopus 로고    scopus 로고
    • Fruit Classification by Wavelet-Entropy and Feedforward Neural Network trained by Fitness-scaled Chaotic ABC and Biogeography-based Optimization
    • Ji GL. Fruit Classification by Wavelet-Entropy and Feedforward Neural Network trained by Fitness-scaled Chaotic ABC and Biogeography-based Optimization. Entropy 2015; 17(8): 5711-28
    • (2015) Entropy , vol.17 , Issue.8 , pp. 5711-5728
    • Ji, G.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.