메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

GSAR: Bioconductor package for Gene Set analysis in R

Author keywords

Gene set analysis; Kolmogorov Smirnov; Minimum spanning tree; Non parametric; Pathways; Wald Wolfowitz

Indexed keywords

COMPLEX NETWORKS; OPEN SOURCE SOFTWARE; OPEN SYSTEMS; STATISTICS;

EID: 85010460642     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-017-1482-6     Document Type: Article
Times cited : (33)

References (43)
  • 1
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha VK, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-73.
    • (2003) Nat Genet , vol.34 , Issue.3 , pp. 267-273
    • Mootha, V.K.1
  • 2
    • 63449107173 scopus 로고    scopus 로고
    • A general modular framework for gene set enrichment analysis
    • Ackermann M, Strimmer K. A general modular framework for gene set enrichment analysis. BMC Bioinformatics. 2009;10:47.
    • (2009) BMC Bioinformatics , vol.10 , pp. 47
    • Ackermann, M.1    Strimmer, K.2
  • 3
    • 79958152651 scopus 로고    scopus 로고
    • Pathway analysis of expression data: deciphering functional building blocks of complex diseases
    • Emmert-Streib F, Glazko GV. Pathway analysis of expression data: deciphering functional building blocks of complex diseases. PLoS Comput Biol. 2011;7(5):e1002053.
    • (2011) PLoS Comput Biol , vol.7 , Issue.5
    • Emmert-Streib, F.1    Glazko, G.V.2
  • 4
    • 84876544061 scopus 로고    scopus 로고
    • Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential
    • Tripathi S, Glazko GV, Emmert-Streib F. Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential. Nucleic Acids Res. 2013;41(7):e82.
    • (2013) Nucleic Acids Res , vol.41 , Issue.7
    • Tripathi, S.1    Glazko, G.V.2    Emmert-Streib, F.3
  • 5
    • 84971667844 scopus 로고    scopus 로고
    • Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline
    • Rahmatallah Y, Emmert-Streib F, Glazko G. Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline. Brief Bioinform. 2016;17(3):393-407.
    • (2016) Brief Bioinform , vol.17 , Issue.3 , pp. 393-407
    • Rahmatallah, Y.1    Emmert-Streib, F.2    Glazko, G.3
  • 6
    • 77955889132 scopus 로고    scopus 로고
    • ROAST: rotation gene set tests for complex microarray experiments
    • Wu D, et al. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics. 2010;26(17):2176-82.
    • (2010) Bioinformatics , vol.26 , Issue.17 , pp. 2176-2182
    • Wu, D.1
  • 7
    • 34547483895 scopus 로고    scopus 로고
    • Improving gene set analysis of microarray data by SAM-GS
    • Dinu I, et al. Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics. 2007;8:242.
    • (2007) BMC Bioinformatics , vol.8 , pp. 242
    • Dinu, I.1
  • 8
    • 0346973088 scopus 로고    scopus 로고
    • On a new multivariate two-sample test
    • Baringhaus L, Franz C. On a new multivariate two-sample test. J Multivar Anal. 2004;88:190-206.
    • (2004) J Multivar Anal , vol.88 , pp. 190-206
    • Baringhaus, L.1    Franz, C.2
  • 9
    • 84923922737 scopus 로고    scopus 로고
    • Comparative evaluation of gene set analysis approaches for RNA-Seq data
    • Rahmatallah Y, Emmert-Streib F, Glazko G. Comparative evaluation of gene set analysis approaches for RNA-Seq data. BMC Bioinformatics. 2014;15:397.
    • (2014) BMC Bioinformatics , vol.15 , pp. 397
    • Rahmatallah, Y.1    Emmert-Streib, F.2    Glazko, G.3
  • 10
    • 84870441671 scopus 로고    scopus 로고
    • Gene set analysis for self-contained tests: complex null and specific alternative hypotheses
    • Rahmatallah Y, Emmert-Streib F, Glazko G. Gene set analysis for self-contained tests: complex null and specific alternative hypotheses. Bioinformatics. 2012;28(23):3073-80.
    • (2012) Bioinformatics , vol.28 , Issue.23 , pp. 3073-3080
    • Rahmatallah, Y.1    Emmert-Streib, F.2    Glazko, G.3
  • 11
    • 84867342942 scopus 로고    scopus 로고
    • Identifying the stem cell of the intestinal crypt: strategies and pitfalls
    • Barker N, van Oudenaarden A, Clevers H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell. 2012;11(4):452-60.
    • (2012) Cell Stem Cell , vol.11 , Issue.4 , pp. 452-460
    • Barker, N.1    Oudenaarden, A.2    Clevers, H.3
  • 12
    • 46249103142 scopus 로고    scopus 로고
    • Differential variability analysis of gene expression and its application to human diseases
    • Ho JW, et al. Differential variability analysis of gene expression and its application to human diseases. Bioinformatics. 2008;24(13):i390-8.
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. i390-i398
    • Ho, J.W.1
  • 13
    • 84871819437 scopus 로고    scopus 로고
    • Genetic variants contribute to gene expression variability in humans
    • Hulse AM, Cai JJ. Genetic variants contribute to gene expression variability in humans. Genetics. 2013;193(1):95-108.
    • (2013) Genetics , vol.193 , Issue.1 , pp. 95-108
    • Hulse, A.M.1    Cai, J.J.2
  • 14
    • 80052308980 scopus 로고    scopus 로고
    • Variance of gene expression identifies altered network constraints in neurological disease
    • Mar JC, et al. Variance of gene expression identifies altered network constraints in neurological disease. PLoS Genet. 2011;7(8).
    • (2011) PLoS Genet. , vol.7 , Issue.8
    • Mar, J.C.1
  • 15
    • 79951801979 scopus 로고    scopus 로고
    • Antisense expression increases gene expression variability and locus interdependency
    • Xu Z, et al. Antisense expression increases gene expression variability and locus interdependency. Mol Syst Biol. 2011;7:468.
    • (2011) Mol Syst Biol , vol.7 , pp. 468
    • Xu, Z.1
  • 16
    • 76549135113 scopus 로고    scopus 로고
    • Evolution in health and medicine Sackler colloquium: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease
    • Feinberg AP, Irizarry RA. Evolution in health and medicine Sackler colloquium: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A. 2010;107 Suppl 1:1757-64.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 1757-1764
    • Feinberg, A.P.1    Irizarry, R.A.2
  • 17
    • 79960927422 scopus 로고    scopus 로고
    • Increased methylation variation in epigenetic domains across cancer types
    • Hansen KD, et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43(8):768-75.
    • (2011) Nat Genet , vol.43 , Issue.8 , pp. 768-775
    • Hansen, K.D.1
  • 18
    • 84867637986 scopus 로고    scopus 로고
    • Gene expression anti-profiles as a basis for accurate universal cancer signatures
    • Bravo HC, et al. Gene expression anti-profiles as a basis for accurate universal cancer signatures. BMC Bioinformatics. 2012;13:272.
    • (2012) BMC Bioinformatics , vol.13 , pp. 272
    • Bravo, H.C.1
  • 19
    • 84930643211 scopus 로고    scopus 로고
    • Gene expression signatures based on variability can robustly predict tumor progression and prognosis
    • Dinalankara W, Bravo HC. Gene expression signatures based on variability can robustly predict tumor progression and prognosis. Cancer Inform. 2015;14:71-81.
    • (2015) Cancer Inform , vol.14 , pp. 71-81
    • Dinalankara, W.1    Bravo, H.C.2
  • 20
    • 84893275855 scopus 로고    scopus 로고
    • Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets
    • Rahmatallah Y, Emmert-Streib F, Glazko G. Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets. Bioinformatics. 2014;30(3):360-8.
    • (2014) Bioinformatics , vol.30 , Issue.3 , pp. 360-368
    • Rahmatallah, Y.1    Emmert-Streib, F.2    Glazko, G.3
  • 21
    • 70350682038 scopus 로고    scopus 로고
    • Statistical methods for gene set co-expression analysis
    • Choi Y, Kendziorski C. Statistical methods for gene set co-expression analysis. Bioinformatics. 2009;25(21):2780-6.
    • (2009) Bioinformatics , vol.25 , Issue.21 , pp. 2780-2786
    • Choi, Y.1    Kendziorski, C.2
  • 22
    • 65549155929 scopus 로고    scopus 로고
    • Identifying set-wise differential co-expression in gene expression microarray data
    • Cho SB, Kim J, Kim JH. Identifying set-wise differential co-expression in gene expression microarray data. BMC Bioinformatics. 2009;10:109.
    • (2009) BMC Bioinformatics , vol.10 , pp. 109
    • Cho, S.B.1    Kim, J.2    Kim, J.H.3
  • 23
    • 77951944123 scopus 로고    scopus 로고
    • A semi-parametric Bayesian model for unsupervised differential co-expression analysis
    • Freudenberg JM, et al. A semi-parametric Bayesian model for unsupervised differential co-expression analysis. BMC Bioinformatics. 2010;11:234.
    • (2010) BMC Bioinformatics , vol.11 , pp. 234
    • Freudenberg, J.M.1
  • 24
    • 81955161934 scopus 로고    scopus 로고
    • Capturing changes in gene expression dynamics by gene set differential coordination analysis
    • Yu T, Bai Y. Capturing changes in gene expression dynamics by gene set differential coordination analysis. Genomics. 2011;98(6):469-77.
    • (2011) Genomics , vol.98 , Issue.6 , pp. 469-477
    • Yu, T.1    Bai, Y.2
  • 25
    • 84943303297 scopus 로고    scopus 로고
    • CoGA: An R package to identify differentially co-expressed gene sets by analyzing the graph spectra
    • Santos SS, et al. CoGA: An R package to identify differentially co-expressed gene sets by analyzing the graph spectra. PLoS One. 2015;10(8):e0135831.
    • (2015) PLoS One , vol.10 , Issue.8
    • Santos, S.S.1
  • 26
    • 84871334644 scopus 로고    scopus 로고
    • Discriminating different classes of biological networks by analyzing the graphs spectra distribution
    • Takahashi DY, et al. Discriminating different classes of biological networks by analyzing the graphs spectra distribution. PLoS One. 2012;7(12):e49949.
    • (2012) PLoS One , vol.7 , Issue.12
    • Takahashi, D.Y.1
  • 27
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: open software development for computational biology and bioinformatics
    • Gentleman RC, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.
    • (2004) Genome Biol , vol.5 , Issue.10 , pp. R80
    • Gentleman, R.C.1
  • 28
    • 43349094507 scopus 로고    scopus 로고
    • The igraph software package for complex network research
    • Complex Systems
    • Scardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006;Complex Systems:1695.
    • (2006) InterJournal. , pp. 1695
    • Scardi, G.1    Nepusz, T.2
  • 29
    • 0000673504 scopus 로고
    • Multivariate generalization of the Wald-Wolfowitz and Smirnov two-sample tests
    • Friedman J, Rafsky L. Multivariate generalization of the Wald-Wolfowitz and Smirnov two-sample tests. Ann Stat. 1979;7:697-717.
    • (1979) Ann Stat , vol.7 , pp. 697-717
    • Friedman, J.1    Rafsky, L.2
  • 30
    • 0036258111 scopus 로고    scopus 로고
    • The IARC TP53 database: new online mutation analysis and recommendations to users
    • Olivier M, et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002;19(6):607-14.
    • (2002) Hum Mutat , vol.19 , Issue.6 , pp. 607-614
    • Olivier, M.1
  • 31
    • 70449091786 scopus 로고    scopus 로고
    • Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
    • Barbie DA, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108-12.
    • (2009) Nature , vol.462 , Issue.7269 , pp. 108-112
    • Barbie, D.A.1
  • 32
    • 23844524767 scopus 로고    scopus 로고
    • Gene signatures of progression and metastasis in renal cell cancer
    • Jones J, et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 2005;11(16):5730-9.
    • (2005) Clin Cancer Res , vol.11 , Issue.16 , pp. 5730-5739
    • Jones, J.1
  • 33
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: kyoto encyclopedia of genes and genomes
    • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30.
    • (2000) Nucleic Acids Res , vol.28 , Issue.1 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 34
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , Issue.43 , pp. 15545-15550
    • Subramanian, A.1
  • 35
    • 77958614226 scopus 로고    scopus 로고
    • Self-contained gene-set analysis of expression data: an evaluation of existing and novel methods
    • Fridley BL, Jenkins GD, Biernacka JM. Self-contained gene-set analysis of expression data: an evaluation of existing and novel methods. PLoS One. 2010;5:9.
    • (2010) PLoS One , vol.5 , pp. 9
    • Fridley, B.L.1    Jenkins, G.D.2    Biernacka, J.M.3
  • 36
    • 0003493777 scopus 로고
    • Statistical methods for research workers
    • Edinburgh: Oliver and Boyd
    • Fisher RA. Statistical methods for research workers. Edinburgh: Oliver and Boyd; 1925.
    • (1925)
    • Fisher, R.A.1
  • 37
    • 33847735810 scopus 로고    scopus 로고
    • Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma
    • Lu C, et al. Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res. 2007;67(4):1757-68.
    • (2007) Cancer Res , vol.67 , Issue.4 , pp. 1757-1768
    • Lu, C.1
  • 38
    • 73449095467 scopus 로고    scopus 로고
    • Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting
    • Kischel P, et al. Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting. Int J Cancer. 2010;126(3):640-50.
    • (2010) Int J Cancer , vol.126 , Issue.3 , pp. 640-650
    • Kischel, P.1
  • 39
    • 0029874902 scopus 로고    scopus 로고
    • Differential expression of versican isoforms in brain tumors
    • Paulus W, et al. Differential expression of versican isoforms in brain tumors. J Neuropathol Exp Neurol. 1996;55(5):528-33.
    • (1996) J Neuropathol Exp Neurol , vol.55 , Issue.5 , pp. 528-533
    • Paulus, W.1
  • 40
    • 0037180503 scopus 로고    scopus 로고
    • Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53
    • Yoon H, et al. Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53. Proc Natl Acad Sci U S A. 2002;99(24):15632-7.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , Issue.24 , pp. 15632-15637
    • Yoon, H.1
  • 41
    • 84963960008 scopus 로고    scopus 로고
    • Protein-protein interaction analysis for functional characterization of helicases
    • Zybailov BL, et al. Protein-protein interaction analysis for functional characterization of helicases. Methods. 2016;108(1):56-64.
    • (2016) Methods , vol.108 , Issue.1 , pp. 56-64
    • Zybailov, B.L.1
  • 42
    • 84862160806 scopus 로고    scopus 로고
    • PINA v2.0: mining interactome modules
    • Cowley MJ, et al. PINA v2.0: mining interactome modules. Nucleic Acids Res. 2012;40(Database issue):D862-5.
    • (2012) Nucleic Acids Res , vol.40 , Issue.DATABASE ISSUE , pp. D862-D865
    • Cowley, M.J.1
  • 43
    • 84941051170 scopus 로고    scopus 로고
    • STRING v10: protein-protein interaction networks, integrated over the tree of life
    • Szklarczyk D, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447-52.
    • (2015) Nucleic Acids Res , vol.43 , Issue.DATABASE ISSUE , pp. D447-D452
    • Szklarczyk, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.