메뉴 건너뛰기




Volumn 223, Issue , 2017, Pages 435-448

Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China

Author keywords

Emissions distribution evaluation; Forecasting and early warning system; Fuzzy synthetic evaluation; Hybrid forecasting model; Interval forecasting

Indexed keywords

AIR QUALITY; DECISION MAKING; DISTRIBUTION FUNCTIONS; FORECASTING; FUZZY SET THEORY; POLLUTION DETECTION;

EID: 85010000802     PISSN: 02697491     EISSN: 18736424     Source Type: Journal    
DOI: 10.1016/j.envpol.2017.01.043     Document Type: Article
Times cited : (70)

References (42)
  • 1
    • 84926673076 scopus 로고    scopus 로고
    • A review on optimization algorithms and application to wind energy integration to grid [J]
    • Behera, S., Sahoo, S., Pati, B.B., A review on optimization algorithms and application to wind energy integration to grid [J]. Renew. Sustain. Energy Rev. 48 (2015), 214–227.
    • (2015) Renew. Sustain. Energy Rev. , vol.48 , pp. 214-227
    • Behera, S.1    Sahoo, S.2    Pati, B.B.3
  • 2
    • 0035184217 scopus 로고    scopus 로고
    • Identification of river water quality using the Fuzzy Synthetic Evaluation approach [J]
    • Chang, N.B., Chen, H.W., Ning, S.K., Identification of river water quality using the Fuzzy Synthetic Evaluation approach [J]. J. Environ. Manag. 63:3 (2001), 293–305.
    • (2001) J. Environ. Manag. , vol.63 , Issue.3 , pp. 293-305
    • Chang, N.B.1    Chen, H.W.2    Ning, S.K.3
  • 3
    • 84890236403 scopus 로고    scopus 로고
    • China tackles the health effects of air pollution
    • Chen, Z., Wang, J., Ma, G., Zhang, Y., China tackles the health effects of air pollution. Lancet 382:9909 (2013), 1959–1960.
    • (2013) Lancet , vol.382 , Issue.9909 , pp. 1959-1960
    • Chen, Z.1    Wang, J.2    Ma, G.3    Zhang, Y.4
  • 4
    • 77954313823 scopus 로고    scopus 로고
    • An enhanced PM 2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations [J]
    • Cobourn, W.G., An enhanced PM 2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations [J]. Atmos. Environ. 44:25 (2010), 3015–3023.
    • (2010) Atmos. Environ. , vol.44 , Issue.25 , pp. 3015-3023
    • Cobourn, W.G.1
  • 5
    • 84983753064 scopus 로고    scopus 로고
    • A hybrid multi-step rolling forecasting model based on SSA and simulated annealing-adaptive particle swarm optimization for wind speed[j]
    • Du, P., Jin, Y., Zhang, K., A hybrid multi-step rolling forecasting model based on SSA and simulated annealing-adaptive particle swarm optimization for wind speed[j]. Sustainability, 2016, 8, 10.3390/su8080754.
    • (2016) Sustainability , pp. 8
    • Du, P.1    Jin, Y.2    Zhang, K.3
  • 6
    • 34147176086 scopus 로고    scopus 로고
    • A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions
    • Dutot, A.L., Rynkiewicz, J., Steiner, F.E., Rude, J., A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environ. Model. Softw., 22, 2007, 1261e1269.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 1261e1269
    • Dutot, A.L.1    Rynkiewicz, J.2    Steiner, F.E.3    Rude, J.4
  • 7
    • 84923017379 scopus 로고    scopus 로고
    • 2.5 pollution using air mass trajectory based geographic model and wavelet transformation [J]
    • Feng, X., Li, Q., Zhu, Y., et al. Artificial neural networks forecasting of PM2.5pollution using air mass trajectory based geographic model and wavelet transformation [J]. Atmos. Environ. 107 (2015), 118–128.
    • (2015) Atmos. Environ. , vol.107 , pp. 118-128
    • Feng, X.1    Li, Q.2    Zhu, Y.3
  • 8
    • 84855514053 scopus 로고    scopus 로고
    • 10 in metropolitan areas: efficacy of neural networks [J]
    • Fernando, H.J.S., Mammarella, M.C., Grandoni, G., et al. Forecasting PM10in metropolitan areas: efficacy of neural networks [J]. Environ. Pollut. 163 (2012), 62–67.
    • (2012) Environ. Pollut. , vol.163 , pp. 62-67
    • Fernando, H.J.S.1    Mammarella, M.C.2    Grandoni, G.3
  • 9
    • 84891707222 scopus 로고    scopus 로고
    • A Brief Review of Nature-inspired Algorithms for Optimization [J]
    • arXiv preprint arXiv:1307.4186
    • Fister, I. Jr., Yang, X.S., Fister, I., et al. A Brief Review of Nature-inspired Algorithms for Optimization [J]. 2013 arXiv preprint arXiv:1307.4186.
    • (2013)
    • Fister, I.1    Yang, X.S.2    Fister, I.3
  • 10
    • 84864403130 scopus 로고    scopus 로고
    • Krill herd: a new bio-inspired optimization algorithm [J]
    • Gandomi, A.H., Alavi, A.H., Krill herd: a new bio-inspired optimization algorithm [J]. Commun. Nonlinear Sci. Numer. Simul. 17:12 (2012), 4831–4845.
    • (2012) Commun. Nonlinear Sci. Numer. Simul. , vol.17 , Issue.12 , pp. 4831-4845
    • Gandomi, A.H.1    Alavi, A.H.2
  • 11
    • 77954144269 scopus 로고    scopus 로고
    • Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere
    • Genc, D.D., Yesilyurt, C., Tuncel, G., Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere. Environ. Monit. Assess., 166, 2010, 11e27.
    • (2010) Environ. Monit. Assess. , vol.166 , pp. 11e27
    • Genc, D.D.1    Yesilyurt, C.2    Tuncel, G.3
  • 12
    • 84880661569 scopus 로고    scopus 로고
    • Neural network model for the prediction of PM 10, daily concentrations in two sites in the Western Mediterranean[J]
    • Gennaro, G.D., Trizio, L., Gilio, A.D., et al. Neural network model for the prediction of PM 10, daily concentrations in two sites in the Western Mediterranean[J]. Sci. Total Environ. 463–464:5 (2013), 875–883.
    • (2013) Sci. Total Environ. , vol.463-464 , Issue.5 , pp. 875-883
    • Gennaro, G.D.1    Trizio, L.2    Gilio, A.D.3
  • 13
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Yen, N., Tung, C.C., Liu, H.H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. R. Soc. London Proc. Ser. A 454 (1996), 903–995, 10.1098/rspa.1998.0193.
    • (1996) R. Soc. London Proc. Ser. A , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3    Wu, M.C.4    Shih, H.H.5    Yen, N.6    Tung, C.C.7    Liu, H.H.8
  • 14
    • 84904335371 scopus 로고    scopus 로고
    • Assessment of the natural sources of particulate matter on the opencast mines air quality [J]
    • Huertas, J.I., Huertas, M.E., Cervantes, G., et al. Assessment of the natural sources of particulate matter on the opencast mines air quality [J]. Sci. Total Environ. 493 (2014), 1047–1055.
    • (2014) Sci. Total Environ. , vol.493 , pp. 1047-1055
    • Huertas, J.I.1    Huertas, M.E.2    Cervantes, G.3
  • 15
    • 84860676627 scopus 로고    scopus 로고
    • An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China [J]
    • Jian, L., Zhao, Y., Zhu, Y.P., et al. An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China [J]. Sci. Total Environ. 426 (2012), 336–345.
    • (2012) Sci. Total Environ. , vol.426 , pp. 336-345
    • Jian, L.1    Zhao, Y.2    Zhu, Y.P.3
  • 16
    • 84886563124 scopus 로고    scopus 로고
    • Particle swarm optimization
    • Springer US New York, USA
    • Kennedy, J., Particle swarm optimization. Encyclopedia of Machine Learning, 2011, Springer US, New York, USA, 760–766.
    • (2011) Encyclopedia of Machine Learning , pp. 760-766
    • Kennedy, J.1
  • 18
    • 84922286301 scopus 로고    scopus 로고
    • Comprehensive assessment grade of air pollutants based on human health risk and ANN method ☆[J]
    • Liu, J., Yang, P., Lv, W., et al. Comprehensive assessment grade of air pollutants based on human health risk and ANN method ☆[J]. Procedia Eng. 84 (2014), 715–720.
    • (2014) Procedia Eng. , vol.84 , pp. 715-720
    • Liu, J.1    Yang, P.2    Lv, W.3
  • 19
    • 84939789758 scopus 로고    scopus 로고
    • Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks[J]
    • Liu, H., Tian, H., Liang, X., et al. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks[J]. Appl. Energy 157 (2015), 183–194.
    • (2015) Appl. Energy , vol.157 , pp. 183-194
    • Liu, H.1    Tian, H.2    Liang, X.3
  • 20
    • 84906761463 scopus 로고    scopus 로고
    • Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil [J]
    • Luna, A.S., Paredes, M.L.L., de Oliveira, G.C.G., et al. Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil [J]. Atmos. Environ. 98 (2014), 98–104.
    • (2014) Atmos. Environ. , vol.98 , pp. 98-104
    • Luna, A.S.1    Paredes, M.L.L.2    de Oliveira, G.C.G.3
  • 21
    • 84921681806 scopus 로고    scopus 로고
    • A New Bio-inspired Algorithm: Chicken Swarm Optimization[C]//International Conference in Swarm Intelligence
    • Springer International Publishing
    • Meng, X., Liu, Y., Gao, X., et al. A New Bio-inspired Algorithm: Chicken Swarm Optimization[C]//International Conference in Swarm Intelligence. 2014, Springer International Publishing, 86–94.
    • (2014) , pp. 86-94
    • Meng, X.1    Liu, Y.2    Gao, X.3
  • 22
    • 84923355494 scopus 로고    scopus 로고
    • The ant lion optimizer [J]
    • Mirjalili, S., The ant lion optimizer [J]. Adv. Eng. Softw. 83 (2015), 80–98.
    • (2015) Adv. Eng. Softw. , vol.83 , pp. 80-98
    • Mirjalili, S.1
  • 24
    • 84962448935 scopus 로고    scopus 로고
    • 2.5, concentration forecasting [J]
    • Niu, M., Wang, Y., Sun, S., et al. A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5, concentration forecasting [J]. Atmos. Environ. 134 (2016), 168–180.
    • (2016) Atmos. Environ. , vol.134 , pp. 168-180
    • Niu, M.1    Wang, Y.2    Sun, S.3
  • 25
    • 2942750318 scopus 로고    scopus 로고
    • Assessment of urban air quality in Istanbul using fuzzy synthetic evaluation [J]
    • Onkal-Engin, G., Demir, I., Hiz, H., Assessment of urban air quality in Istanbul using fuzzy synthetic evaluation [J]. Atmos. Environ. 38:23 (2004), 3809–3815.
    • (2004) Atmos. Environ. , vol.38 , Issue.23 , pp. 3809-3815
    • Onkal-Engin, G.1    Demir, I.2    Hiz, H.3
  • 26
    • 84907857975 scopus 로고    scopus 로고
    • Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models [J]
    • Qin, S., Liu, F., Wang, J., et al. Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models [J]. Atmos. Environ. 98 (2014), 665–675.
    • (2014) Atmos. Environ. , vol.98 , pp. 665-675
    • Qin, S.1    Liu, F.2    Wang, J.3
  • 27
    • 84887825224 scopus 로고    scopus 로고
    • 10 concentrations by a seasonal long-memory model with volatility [J]
    • Reisen, V.A., Sarnaglia, A.J.Q., Reis, N.C., et al. Modeling and forecasting daily average PM10concentrations by a seasonal long-memory model with volatility [J]. Environ. Model. Softw. 51 (2014), 286–295.
    • (2014) Environ. Model. Softw. , vol.51 , pp. 286-295
    • Reisen, V.A.1    Sarnaglia, A.J.Q.2    Reis, N.C.3
  • 28
    • 84945492621 scopus 로고    scopus 로고
    • A new detrended semipartial cross-correlation analysis: assessing the important meteorological factors affecting API [J]
    • Shen, C.H., A new detrended semipartial cross-correlation analysis: assessing the important meteorological factors affecting API [J]. Phys. Lett. A 379:45 (2015), 2962–2969.
    • (2015) Phys. Lett. A , vol.379 , Issue.45 , pp. 2962-2969
    • Shen, C.H.1
  • 29
    • 84864744928 scopus 로고    scopus 로고
    • 10 pollution by the wavelet transformation and an ensemble of neural predictors [J]
    • Siwek, K., Osowski, S., Improving the accuracy of prediction of PM10pollution by the wavelet transformation and an ensemble of neural predictors [J]. Eng. Appl. Artif. Intell. 25:6 (2012), 1246–1258.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , Issue.6 , pp. 1246-1258
    • Siwek, K.1    Osowski, S.2
  • 30
    • 84938849391 scopus 로고    scopus 로고
    • The forecasting research of early warning systems for atmospheric pollutants: a case in Yangtze River Delta region [J]
    • Song, Y., Qin, S., Qu, J., et al. The forecasting research of early warning systems for atmospheric pollutants: a case in Yangtze River Delta region [J]. Atmos. Environ. 118 (2015), 58–69.
    • (2015) Atmos. Environ. , vol.118 , pp. 58-69
    • Song, Y.1    Qin, S.2    Qu, J.3
  • 31
    • 84908146929 scopus 로고    scopus 로고
    • The Action Plan for the Control of Air Pollution [J]
    • State Council of China, The Action Plan for the Control of Air Pollution [J]. 2013-09-12 http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm.
    • (2013)
    • State Council of China1
  • 32
    • 84960381924 scopus 로고    scopus 로고
    • Forecasting energy market indices with recurrent neural networks: case study of crude oil price fluctuations [J]
    • Wang, J., Wang, J., Forecasting energy market indices with recurrent neural networks: case study of crude oil price fluctuations [J]. Energy 102 (2016), 365–374.
    • (2016) Energy , vol.102 , pp. 365-374
    • Wang, J.1    Wang, J.2
  • 33
    • 84910010835 scopus 로고    scopus 로고
    • 2 daily concentrations
    • Wang, P., Liu, Y., Qin, Z., Zhang, G., A novel hybrid forecasting model for PM10and SO2daily concentrations. Sci. Total Environ., 505, 2015, 1202e1212.
    • (2015) Sci. Total Environ. , vol.505 , pp. 1202e1212
    • Wang, P.1    Liu, Y.2    Qin, Z.3    Zhang, G.4
  • 34
    • 84911940566 scopus 로고    scopus 로고
    • Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China [J]
    • Wang, J., Qin, S., Zhou, Q., et al. Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China [J]. Renew. Energy 76 (2015), 91–101.
    • (2015) Renew. Energy , vol.76 , pp. 91-101
    • Wang, J.1    Qin, S.2    Zhou, Q.3
  • 35
    • 84938844897 scopus 로고    scopus 로고
    • Assessing operational ocean observing equipment (OOOE) based on the fuzzy comprehensive evaluation method[J]
    • Wang, Y., Li, Y., Liu, W., et al. Assessing operational ocean observing equipment (OOOE) based on the fuzzy comprehensive evaluation method[J]. Ocean. Eng. 107 (2015), 54–59.
    • (2015) Ocean. Eng. , vol.107 , pp. 54-59
    • Wang, Y.1    Li, Y.2    Liu, W.3
  • 36
    • 84908312369 scopus 로고    scopus 로고
    • Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources [J]
    • Wang, J., Qin, S., Jin, S., et al. Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources [J]. Renew. Sustain. Energy Rev. 42:C (2015), 26–42.
    • (2015) Renew. Sustain. Energy Rev. , vol.42 , Issue.100 , pp. 26-42
    • Wang, J.1    Qin, S.2    Jin, S.3
  • 37
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • 1e41
    • Wu, Z., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal., 1(1), 2009 1e41.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.1
    • Wu, Z.1    Huang, N.E.2
  • 38
    • 84926193230 scopus 로고    scopus 로고
    • A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting [J]
    • Xiao, L., Wang, J., Hou, R., et al. A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting [J]. Energy 82 (2015), 524–549.
    • (2015) Energy , vol.82 , pp. 524-549
    • Xiao, L.1    Wang, J.2    Hou, R.3
  • 39
    • 62549162821 scopus 로고    scopus 로고
    • Nature-inspired Metaheuristic Algorithms
    • Luniver Press UK
    • Yang, X.S., Nature-inspired Metaheuristic Algorithms. 2008, Luniver Press, UK.
    • (2008)
    • Yang, X.S.1
  • 40
    • 84856401659 scopus 로고    scopus 로고
    • A new metaheuristic bat-inspired algorithm [M]//Nature inspired cooperative strategies for optimization (NICSO 2010)
    • Yang, X.S., A new metaheuristic bat-inspired algorithm [M]//Nature inspired cooperative strategies for optimization (NICSO 2010). Springer Berl. Heidelb., 2010, 65–74.
    • (2010) Springer Berl. Heidelb. , pp. 65-74
    • Yang, X.S.1
  • 41
    • 77949623076 scopus 로고    scopus 로고
    • Cuckoo Search via Lévy Flights[C]//Nature & Biologically Inspired Computing, 2009. NaBIC 2009
    • World Congress on. IEEE
    • Yang, X.S., Deb, S., Cuckoo Search via Lévy Flights[C]//Nature & Biologically Inspired Computing, 2009. NaBIC 2009. 2009, World Congress on. IEEE, 210–214.
    • (2009) , pp. 210-214
    • Yang, X.S.1    Deb, S.2
  • 42
    • 79956369785 scopus 로고    scopus 로고
    • Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
    • 135e156
    • Yeh, J.R., Shieh, J.S., Huang, N.E., Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv. Adapt. Data Anal., 2, 2010 135e156.
    • (2010) Adv. Adapt. Data Anal. , vol.2
    • Yeh, J.R.1    Shieh, J.S.2    Huang, N.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.